{"title":"Parallel Resonant Magnetic Field Generator for Biomedical Applications.","authors":"Yuan Lei, Shoulong Dong, Runze Liang, Sizhe Xiang, Qinyu Huang, Junhao Ma, Hongyu Kou, Liang Yu, Chenguo Yao","doi":"10.1109/TBCAS.2024.3450881","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, pulsed magnetic field (PMF) have attracted significant attention as a non-invasive electroporation method in the biomedical field. To further explore the biomedical effects generated by oscillating PMF, we designed a novel PMF generator for biomedical research. Based on resonance principles, the designed generator outputs sinusoidal oscillating PMF. To validate the feasibility and application value of the designed topology, a miniaturized platform was constructed using a selected multi-turn solenoid coil. The output performance of the generator was tested under different discharge voltage levels. The results revealed that the current multiplication factor remained consistently around 2 times, with the energy efficiency and circuit quality factor maintained at 82% and above 4.5, respectively. In addition, the generator's ability to flexibly modulate the number of pulse oscillations was demonstrated. The compatibility of the designed coil parameters and generator circuit parameters was analyzed, with tests on the effects of coil resistance and switch action time on the generator's output performance. Based on the magnetic field action platform, a simulation model of the actual scale coil was established. The spatial and temporal distribution of the magnetic field, induced electric field, and power transmission in the target area were described from multiple angles. Finally, biological experiments conducted using the constructed generator revealed the synergistic effect of sinusoidal oscillating PMF combined with drugs in tumor cell killing.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3450881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, pulsed magnetic field (PMF) have attracted significant attention as a non-invasive electroporation method in the biomedical field. To further explore the biomedical effects generated by oscillating PMF, we designed a novel PMF generator for biomedical research. Based on resonance principles, the designed generator outputs sinusoidal oscillating PMF. To validate the feasibility and application value of the designed topology, a miniaturized platform was constructed using a selected multi-turn solenoid coil. The output performance of the generator was tested under different discharge voltage levels. The results revealed that the current multiplication factor remained consistently around 2 times, with the energy efficiency and circuit quality factor maintained at 82% and above 4.5, respectively. In addition, the generator's ability to flexibly modulate the number of pulse oscillations was demonstrated. The compatibility of the designed coil parameters and generator circuit parameters was analyzed, with tests on the effects of coil resistance and switch action time on the generator's output performance. Based on the magnetic field action platform, a simulation model of the actual scale coil was established. The spatial and temporal distribution of the magnetic field, induced electric field, and power transmission in the target area were described from multiple angles. Finally, biological experiments conducted using the constructed generator revealed the synergistic effect of sinusoidal oscillating PMF combined with drugs in tumor cell killing.