Analysis of continuous data assimilation with large (or even infinite) nudging parameters

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-26 DOI:10.1016/j.cam.2024.116221
Amanda E. Diegel , Xuejian Li , Leo G. Rebholz
{"title":"Analysis of continuous data assimilation with large (or even infinite) nudging parameters","authors":"Amanda E. Diegel ,&nbsp;Xuejian Li ,&nbsp;Leo G. Rebholz","doi":"10.1016/j.cam.2024.116221","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers continuous data assimilation (CDA) in partial differential equation (PDE) discretizations where nudging parameters can be taken arbitrarily large. We prove that solutions are long-time optimally accurate for such parameters for the heat and Navier–Stokes equations (using implicit time stepping methods), with error bounds that do not grow as the nudging parameter gets large. Existing theoretical results either prove optimal accuracy but with the error scaled by the nudging parameter, or suboptimal accuracy that is independent of it. The key idea to the improved analysis is to decompose the error based on a weighted inner product that incorporates the (symmetric by construction) nudging term, and prove that the projection error from this weighted inner product is optimal and independent of the nudging parameter. We apply the idea to BDF2-finite element discretizations of the heat equation and Navier–Stokes equations to show that with CDA, they will admit optimal long-time accurate solutions independent of the nudging parameter, for nudging parameters large enough. Several numerical tests are given for the heat equation, fluid transport equation, Navier–Stokes, and Cahn–Hilliard that illustrate the theory.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers continuous data assimilation (CDA) in partial differential equation (PDE) discretizations where nudging parameters can be taken arbitrarily large. We prove that solutions are long-time optimally accurate for such parameters for the heat and Navier–Stokes equations (using implicit time stepping methods), with error bounds that do not grow as the nudging parameter gets large. Existing theoretical results either prove optimal accuracy but with the error scaled by the nudging parameter, or suboptimal accuracy that is independent of it. The key idea to the improved analysis is to decompose the error based on a weighted inner product that incorporates the (symmetric by construction) nudging term, and prove that the projection error from this weighted inner product is optimal and independent of the nudging parameter. We apply the idea to BDF2-finite element discretizations of the heat equation and Navier–Stokes equations to show that with CDA, they will admit optimal long-time accurate solutions independent of the nudging parameter, for nudging parameters large enough. Several numerical tests are given for the heat equation, fluid transport equation, Navier–Stokes, and Cahn–Hilliard that illustrate the theory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有较大(甚至无限)推移参数的连续数据同化分析
本文研究了偏微分方程(PDE)离散化中的连续数据同化(CDA)问题,在这种离散化中,推导参数可以任意取大。我们证明,对于热方程和 Navier-Stokes 方程(使用隐式时间步进方法),对于此类参数,求解具有长时间最佳精度,误差边界不会随着推导参数的增大而增大。现有的理论结果要么证明了最佳精度,但误差随推移参数的增大而增大,要么证明了与推移参数无关的次优精度。改进分析的关键思路是根据包含(构造上对称的)挤压项的加权内积分解误差,并证明从这个加权内积得出的投影误差是最优的,且与挤压参数无关。我们将这一想法应用于热方程和纳维-斯托克斯方程的 BDF2 有限元离散化,证明了在 CDA 的作用下,当挤入参数足够大时,它们将获得与挤入参数无关的最佳长期精确解。文中给出了热方程、流体传输方程、纳维-斯托克斯方程和卡恩-希利亚德方程的几个数值测试,以说明该理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1