Biomarker discovery using machine learning in the psychosis spectrum

Walid Yassin , Kendra M. Loedige , Cassandra M.J. Wannan , Kristina M. Holton , Jonathan Chevinsky , John Torous , Mei-Hua Hall , Rochelle Ruby Ye , Poornima Kumar , Sidhant Chopra , Kshitij Kumar , Jibran Y. Khokhar , Eric Margolis , Alessandro S. De Nadai
{"title":"Biomarker discovery using machine learning in the psychosis spectrum","authors":"Walid Yassin ,&nbsp;Kendra M. Loedige ,&nbsp;Cassandra M.J. Wannan ,&nbsp;Kristina M. Holton ,&nbsp;Jonathan Chevinsky ,&nbsp;John Torous ,&nbsp;Mei-Hua Hall ,&nbsp;Rochelle Ruby Ye ,&nbsp;Poornima Kumar ,&nbsp;Sidhant Chopra ,&nbsp;Kshitij Kumar ,&nbsp;Jibran Y. Khokhar ,&nbsp;Eric Margolis ,&nbsp;Alessandro S. De Nadai","doi":"10.1016/j.bionps.2024.100107","DOIUrl":null,"url":null,"abstract":"<div><p>The past decade witnessed substantial discoveries related to the psychosis spectrum. Many of these discoveries resulted from pursuits of objective and quantifiable biomarkers in tandem with the application of analytical tools such as machine learning. These approaches provided exciting new insights that significantly helped improve precision in diagnosis, prognosis, and treatment. This article provides an overview of how machine learning has been employed in recent biomarker discovery research in the psychosis spectrum, which includes schizophrenia, schizoaffective disorders, bipolar disorder with psychosis, first episode psychosis, and clinical high risk for psychosis. It highlights both human and animal model studies and explores a varying range of the most impactful biomarkers including cognition, neuroimaging, electrophysiology, and digital markers. We specifically highlight new applications and opportunities for machine learning to impact noninvasive symptom monitoring, prediction of future diagnosis and treatment outcomes, integration of new methods with traditional clinical research and practice, and personalized medicine approaches.</p></div>","PeriodicalId":52767,"journal":{"name":"Biomarkers in Neuropsychiatry","volume":"11 ","pages":"Article 100107"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266614462400025X/pdfft?md5=7101ef10363447bdeb9452c0a8f96944&pid=1-s2.0-S266614462400025X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarkers in Neuropsychiatry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266614462400025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The past decade witnessed substantial discoveries related to the psychosis spectrum. Many of these discoveries resulted from pursuits of objective and quantifiable biomarkers in tandem with the application of analytical tools such as machine learning. These approaches provided exciting new insights that significantly helped improve precision in diagnosis, prognosis, and treatment. This article provides an overview of how machine learning has been employed in recent biomarker discovery research in the psychosis spectrum, which includes schizophrenia, schizoaffective disorders, bipolar disorder with psychosis, first episode psychosis, and clinical high risk for psychosis. It highlights both human and animal model studies and explores a varying range of the most impactful biomarkers including cognition, neuroimaging, electrophysiology, and digital markers. We specifically highlight new applications and opportunities for machine learning to impact noninvasive symptom monitoring, prediction of future diagnosis and treatment outcomes, integration of new methods with traditional clinical research and practice, and personalized medicine approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习发现精神病谱系中的生物标志物
在过去的十年中,我们见证了与精神病谱相关的重大发现。其中许多发现都源于对客观、可量化生物标志物的研究,以及对机器学习等分析工具的应用。这些方法提供了令人兴奋的新见解,大大有助于提高诊断、预后和治疗的精确性。本文概述了机器学习是如何应用于近期精神病谱系生物标记物发现研究的,精神病谱系包括精神分裂症、分裂情感性障碍、伴有精神病的双相情感障碍、首发精神病和精神病临床高风险。报告重点介绍了人类和动物模型研究,并探讨了各种最具影响力的生物标记物,包括认知、神经影像、电生理学和数字标记物。我们特别强调了机器学习在影响无创症状监测、预测未来诊断和治疗结果、将新方法与传统临床研究和实践相结合以及个性化医疗方法方面的新应用和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomarkers in Neuropsychiatry
Biomarkers in Neuropsychiatry Medicine-Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
12
审稿时长
7 weeks
期刊最新文献
Uncovering nesfatin-1 and irisin hormones in schizophrenia and psychosis patients: A comparative investigation Impaired cognitive flexibility in schizophrenia: A systematic review of behavioral and neurobiological findings Elemental examination in blood and urine samples of Jordanian children with autism spectrum disorder Cardiovascular risk factors as potential biomarkers of length of hospital stay and rehospitalization in mood disorders – a retrospective study Biomarker discovery using machine learning in the psychosis spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1