A comprehensive review on catalysts for seawater electrolysis

{"title":"A comprehensive review on catalysts for seawater electrolysis","authors":"","doi":"10.1016/j.apmate.2024.100227","DOIUrl":null,"url":null,"abstract":"<div><p>Seawater electrolysis is a sustainable energy conversion technology that generates clean energy by splitting seawater into hydrogen and oxygen. However, the catalysts used in seawater electrolysis often face significant stability challenges because of the high concentration of salt ions and other impurities present in seawater. This review aims to discern the pivotal factors influencing catalyst stability in seawater electrolysis, elucidate the corrosion and electrochemical degradation mechanisms, and delve into the various strategies employed to enhance catalyst stability. These strategies encompass catalyst material selection, surface modification techniques, catalyst support materials, and catalyst design strategies. By gaining deeper insights into the obstacles and innovations concerning catalyst stability in seawater electrolysis, this review strives to expedite progress toward the commercialization and widespread adoption of this technology as a renewable and feasible approach for hydrogen production. Ultimately, the goal is to foster a cleaner and more sustainable future by enabling the efficient and enduring generation of hydrogen from seawater.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000587/pdfft?md5=c4187905caa66351543df1dc636a16b8&pid=1-s2.0-S2772834X24000587-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater electrolysis is a sustainable energy conversion technology that generates clean energy by splitting seawater into hydrogen and oxygen. However, the catalysts used in seawater electrolysis often face significant stability challenges because of the high concentration of salt ions and other impurities present in seawater. This review aims to discern the pivotal factors influencing catalyst stability in seawater electrolysis, elucidate the corrosion and electrochemical degradation mechanisms, and delve into the various strategies employed to enhance catalyst stability. These strategies encompass catalyst material selection, surface modification techniques, catalyst support materials, and catalyst design strategies. By gaining deeper insights into the obstacles and innovations concerning catalyst stability in seawater electrolysis, this review strives to expedite progress toward the commercialization and widespread adoption of this technology as a renewable and feasible approach for hydrogen production. Ultimately, the goal is to foster a cleaner and more sustainable future by enabling the efficient and enduring generation of hydrogen from seawater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海水电解催化剂综述
海水电解是一种可持续的能源转换技术,通过将海水分离成氢气和氧气来产生清洁能源。然而,由于海水中存在高浓度的盐离子和其他杂质,海水电解中使用的催化剂往往面临着巨大的稳定性挑战。本综述旨在分析影响海水电解催化剂稳定性的关键因素,阐明腐蚀和电化学降解机制,并深入探讨提高催化剂稳定性的各种策略。这些策略包括催化剂材料选择、表面改性技术、催化剂支撑材料和催化剂设计策略。通过深入了解有关海水电解催化剂稳定性的障碍和创新,本综述力图加快这一技术的商业化进程,并将其作为一种可再生的可行制氢方法广泛采用。最终,我们的目标是通过从海水中高效、持久地制氢,创造一个更清洁、更可持续的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1