A novel electrocatalyst from TOCN/CGG hydrogel-supported Fe-rich sludge and its performance in treating azo dyes-contaminated water

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-08-28 DOI:10.1016/j.carbpol.2024.122669
{"title":"A novel electrocatalyst from TOCN/CGG hydrogel-supported Fe-rich sludge and its performance in treating azo dyes-contaminated water","authors":"","doi":"10.1016/j.carbpol.2024.122669","DOIUrl":null,"url":null,"abstract":"<div><p>Monolithic electrocatalysts are desired for the electro-Fenton oxidation system. We used a hydrogel consisting of TEMPO-oxidized cellulose nanofibers (TOCN) and cationic guar gum (CGG) to disperse and support Fe-rich sludge and finally obtained a Fe-doped biochar (denoted as C-Sludge@TOCN/CGG) after the freeze-drying and carbonization. This C-Sludge@TOCN/CGG exhibited a porous structure with evenly-distributed Fe due to the inherently three-dimensional porous structure of TOCN/CGG hydrogel and the abundant carbon content. Importantly, Fe and FeO existed in C-Sludge@TOCN/CGG due to the presence of TOCN and CGG during the pyrolysis. The electrochemical properties of C-Sludge@TOCN/CGG demonstrated its good electrocatalytic activity and stability with few side reactions. It had good performance in the electrocatalytic degradation of various azo dyes, attributed to the synergistic integration of TOCN/CGG-derived carbon matrix and carbonized Fe-rich sludge particles. Specifically, two transient radicals (i.e. ·OH and ·O<sub>2</sub><sup>−</sup>) primarily improved the electrocatalytic degradation performance of C-Sludge@TOCN/CGG. This C-Sludge@TOCN/CGG also efficiently degraded a papermill-sourced wastewater containing direct red 23, direct yellow 11, direct black 19 and toner, in which the COD value decreased from 365.12 to 179.13 mg/L within 9 h. This work provides an example of utilizing renewable materials and solid waste to design electrocatalysts to address the wastewater issue.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724008956","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Monolithic electrocatalysts are desired for the electro-Fenton oxidation system. We used a hydrogel consisting of TEMPO-oxidized cellulose nanofibers (TOCN) and cationic guar gum (CGG) to disperse and support Fe-rich sludge and finally obtained a Fe-doped biochar (denoted as C-Sludge@TOCN/CGG) after the freeze-drying and carbonization. This C-Sludge@TOCN/CGG exhibited a porous structure with evenly-distributed Fe due to the inherently three-dimensional porous structure of TOCN/CGG hydrogel and the abundant carbon content. Importantly, Fe and FeO existed in C-Sludge@TOCN/CGG due to the presence of TOCN and CGG during the pyrolysis. The electrochemical properties of C-Sludge@TOCN/CGG demonstrated its good electrocatalytic activity and stability with few side reactions. It had good performance in the electrocatalytic degradation of various azo dyes, attributed to the synergistic integration of TOCN/CGG-derived carbon matrix and carbonized Fe-rich sludge particles. Specifically, two transient radicals (i.e. ·OH and ·O2) primarily improved the electrocatalytic degradation performance of C-Sludge@TOCN/CGG. This C-Sludge@TOCN/CGG also efficiently degraded a papermill-sourced wastewater containing direct red 23, direct yellow 11, direct black 19 and toner, in which the COD value decreased from 365.12 to 179.13 mg/L within 9 h. This work provides an example of utilizing renewable materials and solid waste to design electrocatalysts to address the wastewater issue.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由 TOCN/CGG 水凝胶支撑的富铁污泥制成的新型电催化剂及其在处理偶氮染料污染水方面的性能
电-芬顿氧化系统需要整体电催化剂。我们使用由 TEMPO 氧化纤维素纳米纤维(TOCN)和阳离子瓜尔胶(CGG)组成的水凝胶来分散和支撑富含铁的污泥,并最终在冷冻干燥和碳化后获得了掺铁生物炭(C-Sludge@TOCN/CGG)。由于 TOCN/CGG 水凝胶固有的三维多孔结构和丰富的碳含量,这种 C-Sludge@TOCN/CGG呈现出多孔结构,铁分布均匀。重要的是,由于热解过程中 TOCN 和 CGG 的存在,C-Sludge@TOCN/CGG 中存在铁和氧化铁。C-Sludge@TOCN/CGG 的电化学特性表明,它具有良好的电催化活性和稳定性,副反应很少。它在电催化降解各种偶氮染料方面具有良好的性能,这归功于 TOCN/CGG 衍生的碳基质与碳化富铁污泥颗粒的协同整合。具体来说,两种瞬时自由基(即 -OH 和 -O2-)主要改善了 C-Sludge@TOCN/CGG 的电催化降解性能。这项工作为利用可再生材料和固体废弃物设计电催化剂来解决废水问题提供了一个范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Editorial Board How to select agroforestry waste biomass for electrospinning and its potential application in bone tissue engineering Chromatography-free synthesis of 2A,2B-disulfonated β-cyclodextrin for regiospecific di-substitution Two-directions mechanical strength and high-barrier mechanisms of cellulose nanocrystal- based hybrids reinforced packaging with nacre-mimetic structure Production of flame-retardant phosphorylated cellulose nanofibrils by choline chloride based reactive deep eutectic solvent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1