{"title":"Invariance of comparisons: Separation of item and person parameters beyond Rasch models","authors":"Gerhard Tutz","doi":"10.1016/j.jmp.2024.102876","DOIUrl":null,"url":null,"abstract":"<div><p>The Rasch model is the most prominent member of the class of latent trait models that are in common use. The main reason is that it can be considered as a measurement model that allows to separate person and item parameters, a feature that is referred to as invariance of comparisons or specific objectivity. It is shown that the property is not an exclusive trait of Rasch type models but is also found in alternative latent trait models. It is distinguished between separability in the theoretical measurement model and empirical separability with empirical separability meaning that parameters can be estimated without reference to the other group of parameters. A new type of pairwise estimator with this property is proposed that can be used also in alternative models. Separability is considered in binary models as well as in polytomous models.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"122 ","pages":"Article 102876"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022249624000452/pdfft?md5=1dcee797a7b9847b792cd716bac6beb0&pid=1-s2.0-S0022249624000452-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000452","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The Rasch model is the most prominent member of the class of latent trait models that are in common use. The main reason is that it can be considered as a measurement model that allows to separate person and item parameters, a feature that is referred to as invariance of comparisons or specific objectivity. It is shown that the property is not an exclusive trait of Rasch type models but is also found in alternative latent trait models. It is distinguished between separability in the theoretical measurement model and empirical separability with empirical separability meaning that parameters can be estimated without reference to the other group of parameters. A new type of pairwise estimator with this property is proposed that can be used also in alternative models. Separability is considered in binary models as well as in polytomous models.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory