Stochastic computing with Levenberg–Marquardt neural networks for the study of radiative transportation phenomena in three-dimensional Carreau nanofluid model subjected to activation energy and porous medium

IF 5.5 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Advances Pub Date : 2024-08-15 DOI:10.1016/j.ceja.2024.100639
Zahoor Shah , Muhammad Asif Zahoor Raja , Faisal Shahzad , Muhammad Waqas , Fahad Alblehai , Sameer Nooh , Sajjad Shaukat Jamal , Nurnadiah Zamri , Shaxnoza Saydaxmetova , Abdelaziz Nasr
{"title":"Stochastic computing with Levenberg–Marquardt neural networks for the study of radiative transportation phenomena in three-dimensional Carreau nanofluid model subjected to activation energy and porous medium","authors":"Zahoor Shah ,&nbsp;Muhammad Asif Zahoor Raja ,&nbsp;Faisal Shahzad ,&nbsp;Muhammad Waqas ,&nbsp;Fahad Alblehai ,&nbsp;Sameer Nooh ,&nbsp;Sajjad Shaukat Jamal ,&nbsp;Nurnadiah Zamri ,&nbsp;Shaxnoza Saydaxmetova ,&nbsp;Abdelaziz Nasr","doi":"10.1016/j.ceja.2024.100639","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this research is to establish the modelling and evaluation of a differential mathematical system for the radiated Carreau nanofluid model (RCNFM) by exploiting the skills of stochastic computing with Levenberg–Marquardt neural networks (SCLMNNs).The reference dataset is created using the Adams technique in the Mathematica software by variation of various physical quantities. The reference data results are trained using a split of seventy percent for training and thirty percent for validation and testing methods. This approach aims to enhance and compare the estimated outcomes with established solutions. The precision and efficacy of the developed stochastic computing with Levenberg–Marquardt neural networks are illustrated by a comparison of the results obtained from the dataset using Adams technique. This comparison includes variations in values of several influential parameters including Magnetic number, Weissenberg Numbers, Porosity parameter, Brownian movement, Prandtl number, Unsteady parameter, Temperature Difference Parameter, Stretching/shrinking parameter, and Lewis Number. The reference data results are trained by assigning 70% for training, 15 % for validation and 15 % for testing. Fitness curves of mean square error, regression studies, error evaluated with histogram plots, and evaluation on absolute errors all authenticate the reliability and precision of stochastic computing with Levenberg–Marquardt neural networks. Performance metrics in terms of mean square error are excellent at the levels 1.19E<sup>−10</sup>, 1.92E<sup>−10</sup>, 9.60E<sup>−11</sup>, 1.02E<sup>−10</sup>, 7.09E<sup>−11</sup>, 2.07E<sup>−09</sup>, 1.66E<sup>−10</sup>, 8.34E<sup>−11</sup>, and 1.17E<sup>−13</sup>against 117, 194, 144, 117, 237, 260, 96, 128, and 74 epochs. The error analysis of the designed and reference datasets suggests that the stochastic computing with Levenberg–Marquardt neural networks is accurate and reliable, with values ranging from <em>E</em><sup>−08</sup> to <em>E</em><sup>−04</sup> across all scenarios. Radiative transport in three dimensional Carreau nanofluids with activation energy in porous media improves the following domains: biomedical engineering, energy systems, chemical process, environmental engineering, thermal management and material science.</p></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100639"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666821124000565/pdfft?md5=8df55b160099fa9d86b3bc9cfab4a9fd&pid=1-s2.0-S2666821124000565-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this research is to establish the modelling and evaluation of a differential mathematical system for the radiated Carreau nanofluid model (RCNFM) by exploiting the skills of stochastic computing with Levenberg–Marquardt neural networks (SCLMNNs).The reference dataset is created using the Adams technique in the Mathematica software by variation of various physical quantities. The reference data results are trained using a split of seventy percent for training and thirty percent for validation and testing methods. This approach aims to enhance and compare the estimated outcomes with established solutions. The precision and efficacy of the developed stochastic computing with Levenberg–Marquardt neural networks are illustrated by a comparison of the results obtained from the dataset using Adams technique. This comparison includes variations in values of several influential parameters including Magnetic number, Weissenberg Numbers, Porosity parameter, Brownian movement, Prandtl number, Unsteady parameter, Temperature Difference Parameter, Stretching/shrinking parameter, and Lewis Number. The reference data results are trained by assigning 70% for training, 15 % for validation and 15 % for testing. Fitness curves of mean square error, regression studies, error evaluated with histogram plots, and evaluation on absolute errors all authenticate the reliability and precision of stochastic computing with Levenberg–Marquardt neural networks. Performance metrics in terms of mean square error are excellent at the levels 1.19E−10, 1.92E−10, 9.60E−11, 1.02E−10, 7.09E−11, 2.07E−09, 1.66E−10, 8.34E−11, and 1.17E−13against 117, 194, 144, 117, 237, 260, 96, 128, and 74 epochs. The error analysis of the designed and reference datasets suggests that the stochastic computing with Levenberg–Marquardt neural networks is accurate and reliable, with values ranging from E−08 to E−04 across all scenarios. Radiative transport in three dimensional Carreau nanofluids with activation energy in porous media improves the following domains: biomedical engineering, energy systems, chemical process, environmental engineering, thermal management and material science.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Levenberg-Marquardt 神经网络进行随机计算,研究受活化能和多孔介质影响的三维 Carreau 纳米流体模型中的辐射输运现象
本研究的目的是利用莱文伯格-玛夸特神经网络(SCLMNNs)的随机计算技能,为辐射卡诺纳米流体模型(RCNFM)建立微分数学系统模型并进行评估。参考数据结果采用百分之七十用于训练、百分之三十用于验证和测试的方法进行训练。这种方法的目的是将估算结果与既定解决方案进行增强和比较。通过比较使用亚当斯技术从数据集获得的结果,可以说明所开发的 Levenberg-Marquardt 神经网络随机计算的精确性和有效性。这种比较包括几个有影响的参数值的变化,包括磁力数、魏森伯格数、孔隙度参数、布朗运动、普朗特数、非稳态参数、温差参数、拉伸/收缩参数和路易斯数。参考数据结果通过分配 70% 用于训练,15% 用于验证,15% 用于测试进行训练。均方误差、回归研究、直方图误差评估以及绝对误差评估等性能曲线都证明了使用 Levenberg-Marquardt 神经网络进行随机计算的可靠性和精确性。在 117、194、144、117、237、260、96、128 和 74 个历元中,均方误差的性能指标分别为 1.19E-10、1.92E-10、9.60E-11、1.02E-10、7.09E-11、2.07E-09、1.66E-10、8.34E-11 和 1.17E-13。对设计数据集和参考数据集的误差分析表明,利用 Levenberg-Marquardt 神经网络进行的随机计算是准确可靠的,在所有方案中的误差值从 E-08 到 E-04。多孔介质中具有活化能的三维 Carreau 纳米流体中的辐射传输改善了以下领域:生物医学工程、能源系统、化学过程、环境工程、热管理和材料科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
期刊最新文献
ReaxFF molecular dynamics studies on the impact of reaction conditions in polystyrene conversion through hydrothermal gasification Efficient cultivation and scale-up of marine microalgae Fistulifera peliculosa and Nannochloropsis oculata for sustainable aquaculture applications Boosting vapor flux in osmotic distillation: A comprehensive evaluation of operating conditions and membrane properties Novel poly(ether sulfone isopropyl sulfide) support layer in thin film composite membrane for desalination Heterogeneous solid acid catalysts for sustainable biodiesel production from wastewater-derived sludge: A systematic and critical review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1