{"title":"Near-surface soil hydrothermal response feedbacks landslide activity and mechanism","authors":"Xiao Ye , Hong-Hu Zhu , Bing Wu , Feng Tian , Wei Zhang , Xie Hu , Luca Schenato , Alessandro Pasuto , Filippo Catani","doi":"10.1016/j.enggeo.2024.107690","DOIUrl":null,"url":null,"abstract":"<div><p>Surface moisture has recently been reported to be used in regional-scale landslide early warning. Nevertheless, near-surface multi-depth hydrothermal measurements as a hillslope scale are often less concerned and rarely linked to landslide kinematics. In this paper, we selected two neighboring landslides with different deformation mechanisms as case studies. Using in-situ multi-source sensors, we monitored real-time soil temperature and moisture at specific depths within approximately 1.5 m. The measurements span two complete monsoon seasons, representing concurrent dry and wet hydrological extremes. Statistical Pearson correlation analysis was employed to quantify the relationships between landslide activity and environmental variables such as soil temperature and moisture content. The results indicate that the near-surface soil temperatures and moisture contents contribute to a better understanding of the factors controlling landslide activity, in which variations synergistically reflect hydrothermal interaction and potential deformation mechanisms. These soil temperatures and moisture contents at certain depths (specifically at 20, 50, and even 100 cm) show moderate to strong correlations (with Pearson correlation coefficient values ranging from 0.4 to 0.8) with landslide deformation. In cases where discrete daily rainfall data exhibited unsatisfactory correlations due to their data attributes, soil temperature and moisture effectively served as alternative indicators for rainfall inputs, aiding in the analysis. Overall, this work emphasizes the critical influence of soil moisture and temperature on landslide dynamics. This study also highlights the need for comprehensive monitoring and forecasting strategies that consider a wide range of environmental factors to mitigate landslide risks associated with climate change, particularly in the context of intensified extreme weather events.</p></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"341 ","pages":"Article 107690"},"PeriodicalIF":6.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224002904","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface moisture has recently been reported to be used in regional-scale landslide early warning. Nevertheless, near-surface multi-depth hydrothermal measurements as a hillslope scale are often less concerned and rarely linked to landslide kinematics. In this paper, we selected two neighboring landslides with different deformation mechanisms as case studies. Using in-situ multi-source sensors, we monitored real-time soil temperature and moisture at specific depths within approximately 1.5 m. The measurements span two complete monsoon seasons, representing concurrent dry and wet hydrological extremes. Statistical Pearson correlation analysis was employed to quantify the relationships between landslide activity and environmental variables such as soil temperature and moisture content. The results indicate that the near-surface soil temperatures and moisture contents contribute to a better understanding of the factors controlling landslide activity, in which variations synergistically reflect hydrothermal interaction and potential deformation mechanisms. These soil temperatures and moisture contents at certain depths (specifically at 20, 50, and even 100 cm) show moderate to strong correlations (with Pearson correlation coefficient values ranging from 0.4 to 0.8) with landslide deformation. In cases where discrete daily rainfall data exhibited unsatisfactory correlations due to their data attributes, soil temperature and moisture effectively served as alternative indicators for rainfall inputs, aiding in the analysis. Overall, this work emphasizes the critical influence of soil moisture and temperature on landslide dynamics. This study also highlights the need for comprehensive monitoring and forecasting strategies that consider a wide range of environmental factors to mitigate landslide risks associated with climate change, particularly in the context of intensified extreme weather events.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.