Factors influencing the stability of Pt-based ORR electrocatalysts in HT-PEMFCs: A theoretical investigation

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-28 DOI:10.1016/j.commatsci.2024.113309
{"title":"Factors influencing the stability of Pt-based ORR electrocatalysts in HT-PEMFCs: A theoretical investigation","authors":"","doi":"10.1016/j.commatsci.2024.113309","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalyst stability is a key parameter for commercializing high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Here, we used density functional theory (DFT) to investigate the stability of Pt-based electrocatalysts by calculating the binding energy (ΔE<sub>b</sub>) of surface Pt atoms under working conditions. Our results show that Pt(1<!--> <!-->1<!--> <!-->1) is more stable than Pt(1<!--> <!-->0<!--> <!-->0) and Pt(1<!--> <!-->1<!--> <!-->0) under vacuum conditions. Stress hurts the stability of Pt(1<!--> <!-->1<!--> <!-->1), regardless of compressive or tensile stress. Most of the transition metals alloyed with Pt improve the stability of Pt(1<!--> <!-->1<!--> <!-->1), especially PtV, PtY, and PtTa, which increase the ΔE<sub>b</sub> by 0.60–0.70 eV (ΔΔE<sub>b</sub>). However, the stability of Pt is significantly destroyed under the working conditions of oxygen reduction reaction (ORR). The specific adsorption of ORR intermediates and electrolyte ions decreases the ΔE<sub>b</sub> of Pt(1<!--> <!-->1<!--> <!-->1) by 0.35–0.95 eV, and the effect of PO<sub>4</sub><sup>3-*</sup> is more significant. Furthermore, when the electric field of the electrochemical double layer is coupled with PO<sub>4</sub><sup>3-*</sup> specific adsorption, ΔΔE<sub>b</sub> further increases to 1.12 eV. Our results highlight the importance of the intrinsic ΔE<sub>b</sub> and the working conditions for the stability of Pt-based electrocatalysts. This work provides important guidelines for the design of stable ORR electrocatalysts for HT-PEMFCs.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005305","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalyst stability is a key parameter for commercializing high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Here, we used density functional theory (DFT) to investigate the stability of Pt-based electrocatalysts by calculating the binding energy (ΔEb) of surface Pt atoms under working conditions. Our results show that Pt(1 1 1) is more stable than Pt(1 0 0) and Pt(1 1 0) under vacuum conditions. Stress hurts the stability of Pt(1 1 1), regardless of compressive or tensile stress. Most of the transition metals alloyed with Pt improve the stability of Pt(1 1 1), especially PtV, PtY, and PtTa, which increase the ΔEb by 0.60–0.70 eV (ΔΔEb). However, the stability of Pt is significantly destroyed under the working conditions of oxygen reduction reaction (ORR). The specific adsorption of ORR intermediates and electrolyte ions decreases the ΔEb of Pt(1 1 1) by 0.35–0.95 eV, and the effect of PO43-* is more significant. Furthermore, when the electric field of the electrochemical double layer is coupled with PO43-* specific adsorption, ΔΔEb further increases to 1.12 eV. Our results highlight the importance of the intrinsic ΔEb and the working conditions for the stability of Pt-based electrocatalysts. This work provides important guidelines for the design of stable ORR electrocatalysts for HT-PEMFCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影响 HT-PEMFC 中铂基 ORR 电催化剂稳定性的因素:理论研究
电催化剂的稳定性是高温聚合物电解质膜燃料电池(HT-PEMFC)商业化的一个关键参数。在此,我们采用密度泛函理论(DFT),通过计算表面铂原子在工作条件下的结合能(ΔEb)来研究铂基电催化剂的稳定性。结果表明,在真空条件下,Pt(1 1 1) 比 Pt(1 0 0) 和 Pt(1 1 0) 更稳定。无论压应力还是拉应力,应力都会损害 Pt(1 1 1) 的稳定性。大多数与铂合金化的过渡金属都能提高铂(1 1 1)的稳定性,尤其是 PtV、PtY 和 PtTa,它们能将ΔEb 提高 0.60-0.70 eV(ΔΔEb)。然而,在氧还原反应(ORR)的工作条件下,铂的稳定性会受到严重破坏。ORR 中间产物和电解质离子的特定吸附会使 Pt(1 1 1) 的 ΔEb 下降 0.35-0.95 eV,而 PO43-* 的影响更为显著。此外,当电化学双层的电场与 PO43-* 的特定吸附耦合时,ΔΔEb 会进一步升高到 1.12 eV。我们的研究结果凸显了内在 ΔEb 和工作条件对铂基电催化剂稳定性的重要性。这项工作为设计用于 HT-PEMFCs 的稳定 ORR 电催化剂提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1