Laura F. Villamizar , Gloria P. Barrera , Alphonse Luange , Katayo Sagata , Paul Gende , Simon Chris , Helen Tsatsia , Freda Mudu , Mitchell Weston , Chikako van Koten , Sarah Mansfield , Trevor A. Jackson , Sean D.G. Marshall
{"title":"Characterization and screening of new Metarhizium isolates to control the coconut rhinoceros beetle in the Pacific islands","authors":"Laura F. Villamizar , Gloria P. Barrera , Alphonse Luange , Katayo Sagata , Paul Gende , Simon Chris , Helen Tsatsia , Freda Mudu , Mitchell Weston , Chikako van Koten , Sarah Mansfield , Trevor A. Jackson , Sean D.G. Marshall","doi":"10.1016/j.funbio.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>The coconut rhinoceros beetle (CRB; <em>Oryctes rhinoceros</em>) is one of the most destructive insect pests of coconut and oil palms in tropical Asia and the Pacific islands. Members of a new variant, known as CRB-G (clade I), have recently spread into the Pacific islands, causing significant damage. Biopesticides containing <em>Metarhizium</em> spp. are the strongest candidates for inundative biological control against the emerging CRB threat. Selection of the most virulent and robust isolate may determine the impact of this control option on the pest. In this work, CRB specimens with natural fungal infection were collected in Papua New Guinea (PNG) and Solomon Islands (SI). Putative entomopathogenic fungi were isolated and identified. These new isolates and some previously obtained from other Pacific countries were molecularly identified, characterized, and tested for virulence against CRB larval populations in PNG and SI in laboratory bioassays. Of the new isolates collected, four obtained from SI were identified as <em>Metarhizium majus</em> (conidia length ⁓11–15 μm), and four from PNG were identified as <em>Metarhizium pingshaense</em> (conidia length ⁓4–6 μm). The most virulent isolate was <em>M. majus</em> AgR-F717, which caused 100 % mortality in 20–23 days against a CRB variant from the CRB-S grouping (clade II) in laboratory bioassays carried out in PNG. Isolates of <em>M. pingshaense</em> did not show pathogenicity against CRB larvae. <em>M. majus</em> AgR-F717 was also the most virulent in laboratory bioassays using the mixed SI population (from both CRB-S and CRB-G groupings) and was selected for further evaluation using artificial breeding sites. Under field conditions, this isolate demonstrated its ability to infect CRB, dispersal up to 100 m from treated artificial breeding sites, and persistence in soil for at least four months. The new isolate AgR-F717 of <em>M. majus</em> has demonstrated potential as an augmentative biological control agent for CRB in PNG and SI.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878614624001193/pdfft?md5=637d2843a13bfab1b073c4ba5432bbfe&pid=1-s2.0-S1878614624001193-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624001193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The coconut rhinoceros beetle (CRB; Oryctes rhinoceros) is one of the most destructive insect pests of coconut and oil palms in tropical Asia and the Pacific islands. Members of a new variant, known as CRB-G (clade I), have recently spread into the Pacific islands, causing significant damage. Biopesticides containing Metarhizium spp. are the strongest candidates for inundative biological control against the emerging CRB threat. Selection of the most virulent and robust isolate may determine the impact of this control option on the pest. In this work, CRB specimens with natural fungal infection were collected in Papua New Guinea (PNG) and Solomon Islands (SI). Putative entomopathogenic fungi were isolated and identified. These new isolates and some previously obtained from other Pacific countries were molecularly identified, characterized, and tested for virulence against CRB larval populations in PNG and SI in laboratory bioassays. Of the new isolates collected, four obtained from SI were identified as Metarhizium majus (conidia length ⁓11–15 μm), and four from PNG were identified as Metarhizium pingshaense (conidia length ⁓4–6 μm). The most virulent isolate was M. majus AgR-F717, which caused 100 % mortality in 20–23 days against a CRB variant from the CRB-S grouping (clade II) in laboratory bioassays carried out in PNG. Isolates of M. pingshaense did not show pathogenicity against CRB larvae. M. majus AgR-F717 was also the most virulent in laboratory bioassays using the mixed SI population (from both CRB-S and CRB-G groupings) and was selected for further evaluation using artificial breeding sites. Under field conditions, this isolate demonstrated its ability to infect CRB, dispersal up to 100 m from treated artificial breeding sites, and persistence in soil for at least four months. The new isolate AgR-F717 of M. majus has demonstrated potential as an augmentative biological control agent for CRB in PNG and SI.