首页 > 最新文献

Fungal biology最新文献

英文 中文
Combined metabolome and transcriptome analyses reveal the pivotal role of mycorrhizal fungi Tulasnella sp. BJ1 in the growth and accumulation of secondary metabolites in Bletilla striata (Thunb.) Reiehb.f.
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-28 DOI: 10.1016/j.funbio.2025.101553
Yueyu Ye , Shiqing Li , Xiaomei Li , Man Chen , Haimin Chen , Qiang Yuan , Dongfeng Yang , Meiya Li , Fusheng Jiang , Chunchun Zhang
The orchids usually coexist with mycorrhizal fungi during their growth and development. Numerous studies have substantiated the pivotal regulatory role of Tulasnella sp. mycorrhizal fungi in the germination and growth of orchid seeds. However, there remains a dearth of research elucidating the effects and underlying mechanisms of Tulasnella sp. on the growth, development, and metabolite accumulation in Bletilla striata seedlings. In the current study, metabolomics and transcriptomic analysis were used to reveal the key role of the mycorrhizal fungus Tulasnella sp.BJ1 in the growth and accumulation of secondary metabolites in B. striata. The results demonstrated that the application of BJ1 significantly enhanced the growth and development of B. striata seedlings. In September, the plant weight, tuber diameter, and tuber weight in the BJ1 treatment group reached 44.27 ± 6.79 g, 6.13 ± 0.53 cm, and 23.35 ± 3.06 g, respectively, surpassing those in the control group. The polysaccharide content in the BJ1 treatment group and control group peaked in June, reaching 14.91 ± 2.26 % and 14.38 ± 0.25 %, respectively. Total phenol content in both groups decreased in May and June, and the total phenol content in BJ1 treatment group was significantly lower than that in control group. The significant decrease observed in total phenol content during May and June may be attributed to an increase in proportion of polysaccharides promoted by BJ1. The transcriptome results showed that BJ1 upregulated polysaccharide biosynthesis-related genes, such as mannose phosphatase, transferase, mannose 6-phosphate isomerase, hexokinase, fructose kinase, and glucose 6-phosphate isomerase, as well as genes involved in stilbenes biosynthesis, including hydroxycinnamyltransferase and transcinnamate 4-monooxygenase. Metabolomics data indicated that the content of mannose and seven stilbene compounds in the tubers increased significantly after BJ1 treatment. Interestingly, the accumulation of these compounds corresponds to the pathway of upregulated genes. These findings suggest that an upregulation in mannose synthesis may facilitate the accumulation of polysaccharides in B. striata. Therefore, the current study uncovered that the mycorrhizal fungus Tulasnella sp. BJ1 can not only promote the growth and development of B. striata seedlings and increase tuber yield but also promote the accumulation of polysaccharides and stilbenes.
{"title":"Combined metabolome and transcriptome analyses reveal the pivotal role of mycorrhizal fungi Tulasnella sp. BJ1 in the growth and accumulation of secondary metabolites in Bletilla striata (Thunb.) Reiehb.f.","authors":"Yueyu Ye ,&nbsp;Shiqing Li ,&nbsp;Xiaomei Li ,&nbsp;Man Chen ,&nbsp;Haimin Chen ,&nbsp;Qiang Yuan ,&nbsp;Dongfeng Yang ,&nbsp;Meiya Li ,&nbsp;Fusheng Jiang ,&nbsp;Chunchun Zhang","doi":"10.1016/j.funbio.2025.101553","DOIUrl":"10.1016/j.funbio.2025.101553","url":null,"abstract":"<div><div>The orchids usually coexist with mycorrhizal fungi during their growth and development. Numerous studies have substantiated the pivotal regulatory role of <em>Tulasnella</em> sp. mycorrhizal fungi in the germination and growth of orchid seeds. However, there remains a dearth of research elucidating the effects and underlying mechanisms of <em>Tulasnella</em> sp. on the growth, development, and metabolite accumulation in <em>Bletilla striata</em> seedlings. In the current study, metabolomics and transcriptomic analysis were used to reveal the key role of the mycorrhizal fungus <em>Tulasnella</em> sp.BJ1 in the growth and accumulation of secondary metabolites in <em>B. striata</em>. The results demonstrated that the application of BJ1 significantly enhanced the growth and development of <em>B. striata</em> seedlings. In September, the plant weight, tuber diameter, and tuber weight in the BJ1 treatment group reached 44.27 ± 6.79 g, 6.13 ± 0.53 cm, and 23.35 ± 3.06 g, respectively, surpassing those in the control group. The polysaccharide content in the BJ1 treatment group and control group peaked in June, reaching 14.91 ± 2.26 % and 14.38 ± 0.25 %, respectively. Total phenol content in both groups decreased in May and June, and the total phenol content in BJ1 treatment group was significantly lower than that in control group. The significant decrease observed in total phenol content during May and June may be attributed to an increase in proportion of polysaccharides promoted by BJ1. The transcriptome results showed that BJ1 upregulated polysaccharide biosynthesis-related genes, such as mannose phosphatase, transferase, mannose 6-phosphate isomerase, hexokinase, fructose kinase, and glucose 6-phosphate isomerase, as well as genes involved in stilbenes biosynthesis, including hydroxycinnamyltransferase and transcinnamate 4-monooxygenase. Metabolomics data indicated that the content of mannose and seven stilbene compounds in the tubers increased significantly after BJ1 treatment. Interestingly, the accumulation of these compounds corresponds to the pathway of upregulated genes. These findings suggest that an upregulation in mannose synthesis may facilitate the accumulation of polysaccharides in <em>B. striata</em>. Therefore, the current study uncovered that the mycorrhizal fungus <em>Tulasnella</em> sp. BJ1 can not only promote the growth and development of <em>B</em>. <em>striata</em> seedlings and increase tuber yield but also promote the accumulation of polysaccharides and stilbenes.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 3","pages":"Article 101553"},"PeriodicalIF":2.9,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pleurotus ostreatus mek1 is essential for meiosis and basidiospore production
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-27 DOI: 10.1016/j.funbio.2025.101562
Takehito Nakazawa , Takeshi Kobukata , Fuga Yamasaki , Junko Sugano , Minji Oh , Moriyuki Kawauchi , Yoichi Honda
Breeding strains without basidiospores is important for the mushroom industry. However, target genes for sporeless breeding remain limited. To identify a new gene essential for basidiospore production in Pleurotus ostreatus, the RNA sequencing data obtained in our previous study were re-analyzed. Among the 36 P. ostreatus genes that are exclusively expressed in the gills where basidiospores are formed and produced, candidate genes were narrowed down using transcriptome data during the fruiting stage of Coprinopsis cinerea, in which the meiotic steps progress synchronously. Three C. cinerea genes homologous to the gill-specific P. ostreatus genes were upregulated during meiosis. One of these three genes encodes a protein homologous to Saccharomyces cerevisiae Mek1p, a protein kinase important in the meiotic recombination checkpoint. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting mek1 were introduced into the protoplasts of the dikaryotic P. ostreatus strain PC9×#64, which showed that the obtained dikaryotic gene disruptant produced no basidiospores. Microscopic analysis suggests that meiosis is suspended during telophase I. These results suggested that P. ostreatus Mek1 is essential for meiosis II progression and basidiospore production. In addition, disturbed orientation and loss of negative gravitropism during fruiting were observed.
培育无基生孢子的菌株对蘑菇产业非常重要。然而,无孢子育种的目标基因仍然有限。为了确定一个对口蘑产生基孢子至关重要的新基因,我们对之前研究中获得的 RNA 测序数据进行了重新分析。在 36 个只在基生孢子形成和产生的鳃中表达的 P. ostreatus 基因中,我们利用减数分裂同步进行的 Coprinopsis cinerea 果实期的转录组数据缩小了候选基因的范围。在减数分裂过程中,有三个与鳃特异性 P. ostreatus 基因同源的 C. cinerea 基因被上调。这三个基因中有一个编码与酿酒酵母 Mek1p 同源的蛋白,Mek1p 是一种蛋白激酶,在减数分裂重组检查点中非常重要。将含有表达盒的质粒(用于抗百菌清 B 筛选)、Cas9 和靶向 mek1 的单导 RNA 导入到二核菌 P. ostreatus 菌株 PC9×#64 的原生质体中,结果表明所获得的二核菌基因干扰物不产生基生孢子。显微镜分析表明,减数分裂在端期 I 暂停。这些结果表明,大孔菌 Mek1 对减数分裂 II 的进行和基生孢子的产生至关重要。此外,在结实过程中还观察到定向紊乱和负引力丧失。
{"title":"Pleurotus ostreatus mek1 is essential for meiosis and basidiospore production","authors":"Takehito Nakazawa ,&nbsp;Takeshi Kobukata ,&nbsp;Fuga Yamasaki ,&nbsp;Junko Sugano ,&nbsp;Minji Oh ,&nbsp;Moriyuki Kawauchi ,&nbsp;Yoichi Honda","doi":"10.1016/j.funbio.2025.101562","DOIUrl":"10.1016/j.funbio.2025.101562","url":null,"abstract":"<div><div>Breeding strains without basidiospores is important for the mushroom industry. However, target genes for sporeless breeding remain limited. To identify a new gene essential for basidiospore production in <em>Pleurotus ostreatus</em>, the RNA sequencing data obtained in our previous study were re-analyzed. Among the 36 <em>P. ostreatus</em> genes that are exclusively expressed in the gills where basidiospores are formed and produced, candidate genes were narrowed down using transcriptome data during the fruiting stage of <em>Coprinopsis cinerea</em>, in which the meiotic steps progress synchronously. Three <em>C. cinerea</em> genes homologous to the gill-specific <em>P. ostreatus</em> genes were upregulated during meiosis. One of these three genes encodes a protein homologous to <em>Saccharomyces cerevisiae</em> Mek1p, a protein kinase important in the meiotic recombination checkpoint. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting <em>mek1</em> were introduced into the protoplasts of the dikaryotic <em>P. ostreatus</em> strain PC9×#64, which showed that the obtained dikaryotic gene disruptant produced no basidiospores. Microscopic analysis suggests that meiosis is suspended during telophase I. These results suggested that <em>P. ostreatus</em> Mek1 is essential for meiosis II progression and basidiospore production. In addition, disturbed orientation and loss of negative gravitropism during fruiting were observed.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 3","pages":"Article 101562"},"PeriodicalIF":2.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomic profiles of the infection pathways of Calcarisporium cordycipiticola on the cultivated and medicinal mushroom, Cordyceps militaris
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-26 DOI: 10.1016/j.funbio.2025.101561
Li Lu , Mahesh C.A. Galappaththi , Nimesha M. Patabendige , Yu-Zhe Feng , Tian Yang , Samantha C. Karunarathna , Jiang-Tao Xie , Eleni Gentekaki , Sylvie Rapior , Esteban Charria-Girón , Marc Stadler , Wei-Feng Ding , Feng-Hua Tian , Xiang-Yu Zeng
Cordyceps militaris is a widely cultivated mushroom with multiple medicinal properties. However, the emergence of white mildew disease caused by Calcarisporium cordycipiticola has become a serious dilemma, leading to economic losses in its industrial production. The genome of Ca. cordycipiticola possesses more secondary metabolite biosynthetic gene clusters and a smaller number of genes encoding for carbohydrate-active enzyme secretion than other mycoparasites. To uncover those functional metabolites correlated with the infection process, metabolomic profiles between healthy C. militaris fruit bodies (CK) and healthy (HFB) and diseased (DFB) parts of infected C. militaris fruit bodies by Ca. cordicipiticola were compared based on untargeted metabolomic analyses. The function of different metabolites during the pathogen infection and host response processes were further analyzed according to their respective metabolic pathways. Results of key metabolic pathway analyses suggested that a sterigmatocystin-like metabolite functions as one of the virulence factors of white mildew disease on C. militaris, whereas S-adenosyl-L-methionine represents a hub intermediate in both processes of pathogen infection and host response, highlighting the relevance of methyl group turnovers in this battle. More importantly, the detection of toxic metabolites in diseased C. militaris fruiting bodies suggests that this macrofungus contaminated by Ca. cordycipiticola should not be consumed due to the risk that it may contain related instead toxins. This study hypothesizes on the scenario of key metabolic biosynthesis in the battle between Ca. cordycipiticola and C. militaris. Our instead findings not only shed light on the interaction between the pathogen and the host but also provide crucial insights for the development of effective prevention and control strategies in the future.
{"title":"Metabolomic profiles of the infection pathways of Calcarisporium cordycipiticola on the cultivated and medicinal mushroom, Cordyceps militaris","authors":"Li Lu ,&nbsp;Mahesh C.A. Galappaththi ,&nbsp;Nimesha M. Patabendige ,&nbsp;Yu-Zhe Feng ,&nbsp;Tian Yang ,&nbsp;Samantha C. Karunarathna ,&nbsp;Jiang-Tao Xie ,&nbsp;Eleni Gentekaki ,&nbsp;Sylvie Rapior ,&nbsp;Esteban Charria-Girón ,&nbsp;Marc Stadler ,&nbsp;Wei-Feng Ding ,&nbsp;Feng-Hua Tian ,&nbsp;Xiang-Yu Zeng","doi":"10.1016/j.funbio.2025.101561","DOIUrl":"10.1016/j.funbio.2025.101561","url":null,"abstract":"<div><div><em>Cordyceps militaris</em> is a widely cultivated mushroom with multiple medicinal properties. However, the emergence of white mildew disease caused by <em>Calcarisporium cordycipiticola</em> has become a serious dilemma, leading to economic losses in its industrial production. The genome of <em>Ca</em>. <em>cordycipiticola</em> possesses more secondary metabolite biosynthetic gene clusters and a smaller number of genes encoding for carbohydrate-active enzyme secretion than other mycoparasites. To uncover those functional metabolites correlated with the infection process, metabolomic profiles between healthy <em>C. militaris</em> fruit bodies (CK) and healthy (HFB) and diseased (DFB) parts of infected <em>C. militaris</em> fruit bodies by <em>Ca. cordicipiticola</em> were compared based on untargeted metabolomic analyses. The function of different metabolites during the pathogen infection and host response processes were further analyzed according to their respective metabolic pathways. Results of key metabolic pathway analyses suggested that a sterigmatocystin-like metabolite functions as one of the virulence factors of white mildew disease on <em>C. militaris</em>, whereas <em>S</em>-adenosyl-L-methionine represents a hub intermediate in both processes of pathogen infection and host response, highlighting the relevance of methyl group turnovers in this battle. More importantly, the detection of toxic metabolites in diseased <em>C. militaris</em> fruiting bodies suggests that this macrofungus contaminated by <em>Ca. cordycipiticola</em> should not be consumed due to the risk that it may contain related instead toxins. This study hypothesizes on the scenario of key metabolic biosynthesis in the battle between <em>Ca</em>. <em>cordycipiticola</em> and <em>C. militaris</em>. Our instead findings not only shed light on the interaction between the pathogen and the host but also provide crucial insights for the development of effective prevention and control strategies in the future.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 3","pages":"Article 101561"},"PeriodicalIF":2.9,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mango Microcosm: Unveiling the species diversity and pathogenic potential of fungi isolated from mango (Mangifera indica) in northern Thailand
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-22 DOI: 10.1016/j.funbio.2025.101552
A. Armand , M. Fallahi , S. Absalan , A.R. Rathnayaka , U. Braun , P.W.J. Taylor , K. Khongphinitbunjong , E.H.C. McKenzie , K.D. Hyde , F. Al-Otibi , R.S. Jayawardena
This study aimed to identify fungal pathogens responsible for diseases affecting mango orchards and fruits in the primary mango-growing regions of northern Thailand, and to evaluate their pathogenicity against mango. Mango leaves, branches, and fruits showing fruit and leaf anthracnose, leaf spots, fruit rot, stem-end rot, fruit decline, leaf and stem blight, and shoot dieback were collected and examined from Chiang Rai, Kalasin, Nan, and Sakon Nakhon provinces located in northern Thailand. The isolated fungi were identified based on morphological characteristics and multi-locus phylogenetic analysis based on the most reliable markers and loci combinations suggested for each genus. This study illustrates and describes nine pathogenic genera, including eight known genera and one new genus, Pseudopallidocercospora. Botryosphaeria fabicerciana, Botryosphaeria scharifii, Colletotrichum asianum, Colletotrichum gigasporum, Colletotrichum guajavae, Colletotrichum musae, Colletotrichum plurivorum, Colletotrichum siamense, Diaporthe rosae, Diaporthe siamensis, Diaporthe subellipicola, Neofusicoccum sinoeucalypti, Neopestalotiopsis chrysea, Neopestalotiopsis cubana, Neopestalotiopsis dendrobii, Neopestalotiopsis psidii, Neopestalotiopsis rhododendri, Neoscytalidium dimidiatum, Pestalotiopsis humicola and Pestalotiopsis menhaiensis were identified as known species. Five new species, including Neopestalotiopsis mangiferae, Neopestalotiopsis mangifericola, Neopestalotiopsis mangiferigena, Pseudopallidocercospora mangiferae, and Zasmidium mangiferae were fully illustrated and justified. Moreover, this study reports twelve globally new host-fungus occurrences and six new geographical records. Furthermore, pathogenicity assessment revealed that the majority of the isolates (91.6 %) were pathogenic against mango, while their virulence was significantly different. C. asianum was found to be the predominant pathogenic species with a frequency of 31.6 %. Haplotype networks generated using ITS sequence data for 220 C. asianum strains isolated from mango across 14 countries revealed eight haplotypes, indicating high genetic diversity (Hd = 0.5936) within the species. However, the analysis did not reveal a clear grouping of isolates based on their country of origin.
{"title":"Mango Microcosm: Unveiling the species diversity and pathogenic potential of fungi isolated from mango (Mangifera indica) in northern Thailand","authors":"A. Armand ,&nbsp;M. Fallahi ,&nbsp;S. Absalan ,&nbsp;A.R. Rathnayaka ,&nbsp;U. Braun ,&nbsp;P.W.J. Taylor ,&nbsp;K. Khongphinitbunjong ,&nbsp;E.H.C. McKenzie ,&nbsp;K.D. Hyde ,&nbsp;F. Al-Otibi ,&nbsp;R.S. Jayawardena","doi":"10.1016/j.funbio.2025.101552","DOIUrl":"10.1016/j.funbio.2025.101552","url":null,"abstract":"<div><div>This study aimed to identify fungal pathogens responsible for diseases affecting mango orchards and fruits in the primary mango-growing regions of northern Thailand, and to evaluate their pathogenicity against mango. Mango leaves, branches, and fruits showing fruit and leaf anthracnose, leaf spots, fruit rot, stem-end rot, fruit decline, leaf and stem blight, and shoot dieback were collected and examined from Chiang Rai, Kalasin, Nan, and Sakon Nakhon provinces located in northern Thailand. The isolated fungi were identified based on morphological characteristics and multi-locus phylogenetic analysis based on the most reliable markers and loci combinations suggested for each genus. This study illustrates and describes nine pathogenic genera, including eight known genera and one new genus, <em>Pseudopallidocercospora</em>. <em>Botryosphaeria fabicerciana</em>, <em>Botryosphaeria scharifii</em>, <em>Colletotrichum asianum</em>, <em>Colletotrichum gigasporum</em>, <em>Colletotrichum guajavae</em>, <em>Colletotrichum musae</em>, <em>Colletotrichum plurivorum</em>, <em>Colletotrichum siamense</em>, <em>Diaporthe rosae</em>, <em>Diaporthe siamensis</em>, <em>Diaporthe subellipicola</em>, <em>Neofusicoccum sinoeucalypti</em>, <em>Neopestalotiopsis chrysea</em>, <em>Neopestalotiopsis cubana</em>, <em>Neopestalotiopsis dendrobii</em>, <em>Neopestalotiopsis psidii</em>, <em>Neopestalotiopsis rhododendri</em>, <em>Neoscytalidium dimidiatum</em>, <em>Pestalotiopsis humicola</em> and <em>Pestalotiopsis menhaiensis</em> were identified as known species. Five new species, including <em>Neopestalotiopsis mangiferae</em>, <em>Neopestalotiopsis mangifericola</em>, <em>Neopestalotiopsis mangiferigena</em>, <em>Pseudopallidocercospora mangiferae</em>, and <em>Zasmidium mangiferae</em> were fully illustrated and justified. Moreover, this study reports twelve globally new host-fungus occurrences and six new geographical records. Furthermore, pathogenicity assessment revealed that the majority of the isolates (91.6 %) were pathogenic against mango, while their virulence was significantly different. <em>C. asianum</em> was found to be the predominant pathogenic species with a frequency of 31.6 %. Haplotype networks generated using ITS sequence data for 220 <em>C. asianum</em> strains isolated from mango across 14 countries revealed eight haplotypes, indicating high genetic diversity (Hd = 0.5936) within the species. However, the analysis did not reveal a clear grouping of isolates based on their country of origin.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 3","pages":"Article 101552"},"PeriodicalIF":2.9,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolate and plant host specificity of rhizosphere competence in Trichoderma species
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-22 DOI: 10.1016/j.funbio.2025.101554
N. Cripps-Guazzone , H.J. Ridgway , L.M. Condron , K.L. McLean , A. Stewart , E.E. Jones
Rhizosphere competence, the ability of a microorganism to colonise and proliferate in the rhizosphere of developing roots, is often studied when mechanisms of individual Trichoderma biocontrol agents are investigated. However, the extent of rhizosphere competence of Trichoderma species and isolates within species has not been widely studied. The rhizosphere competence of 22 Trichoderma isolates from a range of species was assessed using Trichoderma coated sweet corn (Zea mays) seeds grown in non-sterile soil. Results showed that 82 % of the Trichoderma isolates inoculated onto the seeds produced rhizosphere populations significantly greater than the control, indicating rhizosphere competence was widespread within the species that were tested. The least and most rhizosphere-competent isolates belonged to the same species indicating that rhizosphere competence was not species specific. The three least (T. crassum LU555, Trichoderma harzianum LU672, and T. virens LU556) and most (Trichoderma atroviride LU132, T. harzianum LU151, and LU673) rhizosphere-competent isolates were assessed on six plant species (sweet corn, ryegrass, cauliflower, carrot, onion, and white clover). Ryegrass and cauliflower were the most receptive plants to colonisation of the rhizosphere by Trichoderma species, and clover the least. Preferential rhizosphere colonisation was observed between some Trichoderma isolates and the plant species indicating that overall rhizosphere competence was dependent on specific interactions between the Trichoderma isolate and the plant species. However, some isolates were more broadly rhizosphere-competent than others and may have greater potential as plant protection agents. Since only one time point was sampled, future work is required to determine the temporal dynamics of rhizosphere colonisation as well as the spatial colonisation along the length of the root to determine whether different isolates preferentially colonise different regions of the root over different time periods.
{"title":"Isolate and plant host specificity of rhizosphere competence in Trichoderma species","authors":"N. Cripps-Guazzone ,&nbsp;H.J. Ridgway ,&nbsp;L.M. Condron ,&nbsp;K.L. McLean ,&nbsp;A. Stewart ,&nbsp;E.E. Jones","doi":"10.1016/j.funbio.2025.101554","DOIUrl":"10.1016/j.funbio.2025.101554","url":null,"abstract":"<div><div>Rhizosphere competence, the ability of a microorganism to colonise and proliferate in the rhizosphere of developing roots, is often studied when mechanisms of individual <em>Trichoderma</em> biocontrol agents are investigated. However, the extent of rhizosphere competence of <em>Trichoderma</em> species and isolates within species has not been widely studied. The rhizosphere competence of 22 <em>Trichoderma</em> isolates from a range of species was assessed using <em>Trichoderma</em> coated sweet corn (<em>Zea mays</em>) seeds grown in non-sterile soil. Results showed that 82 % of the <em>Trichoderma</em> isolates inoculated onto the seeds produced rhizosphere populations significantly greater than the control, indicating rhizosphere competence was widespread within the species that were tested. The least and most rhizosphere-competent isolates belonged to the same species indicating that rhizosphere competence was not species specific. The three least (<em>T. crassum</em> LU555, <em>Trichoderma harzianum</em> LU672, and <em>T. virens</em> LU556) and most (<em>Trichoderma atroviride</em> LU132, <em>T. harzianum</em> LU151, and LU673) rhizosphere-competent isolates were assessed on six plant species (sweet corn, ryegrass, cauliflower, carrot, onion, and white clover). Ryegrass and cauliflower were the most receptive plants to colonisation of the rhizosphere by <em>Trichoderma</em> species, and clover the least. Preferential rhizosphere colonisation was observed between some <em>Trichoderma</em> isolates and the plant species indicating that overall rhizosphere competence was dependent on specific interactions between the <em>Trichoderma</em> isolate and the plant species. However, some isolates were more broadly rhizosphere-competent than others and may have greater potential as plant protection agents. Since only one time point was sampled, future work is required to determine the temporal dynamics of rhizosphere colonisation as well as the spatial colonisation along the length of the root to determine whether different isolates preferentially colonise different regions of the root over different time periods.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 3","pages":"Article 101554"},"PeriodicalIF":2.9,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytopathogenic fungi and oomycetes causing diseases in Theobroma cacao: Chemical and genetic features
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-19 DOI: 10.1016/j.funbio.2025.101551
Luis A. Ramírez-Camejo , Candelario Rodríguez , Ximena Florez-Buitrago
Phytopathogenic fungi (PF) and oomycetes (Oo) represent some of the most significant plant pathogens globally, causing extensive damage and economic losses in the chocolate tree, Theobroma cacao. This review aims to elucidate the molecular mechanisms behind cacao-PF/Oo interactions, with a particular emphasis on virulence factors. Despite their importance, the secondary metabolites (SMs) produced during controlled interactions between PF, Oo, and T. cacao remain underexplored. We have conducted a comprehensive review of the most critical PF and Oo species that infect T. cacao and highlighted the agricultural relevance of their SM chemistry. This investigation analyzes peer-reviewed papers from electronic databases PubMed, MDPI, ScienceDirect, Google Scholar, and SCOPUS. Through this analysis, we identify gaps in the current understanding and propose potential directions for future research. This includes a deeper investigation into the role of SMs in pathogen virulence, which could inform the development of more effective disease management strategies.
{"title":"Phytopathogenic fungi and oomycetes causing diseases in Theobroma cacao: Chemical and genetic features","authors":"Luis A. Ramírez-Camejo ,&nbsp;Candelario Rodríguez ,&nbsp;Ximena Florez-Buitrago","doi":"10.1016/j.funbio.2025.101551","DOIUrl":"10.1016/j.funbio.2025.101551","url":null,"abstract":"<div><div>Phytopathogenic fungi (PF) and oomycetes (Oo) represent some of the most significant plant pathogens globally, causing extensive damage and economic losses in the chocolate tree, <em>Theobroma cacao.</em> This review aims to elucidate the molecular mechanisms behind cacao-PF/Oo interactions, with a particular emphasis on virulence factors. Despite their importance, the secondary metabolites (SMs) produced during controlled interactions between PF, Oo, and <em>T. cacao</em> remain underexplored. We have conducted a comprehensive review of the most critical PF and Oo species that infect <em>T. cacao</em> and highlighted the agricultural relevance of their SM chemistry. This investigation analyzes peer-reviewed papers from electronic databases PubMed, MDPI, ScienceDirect, Google Scholar, and SCOPUS. Through this analysis, we identify gaps in the current understanding and propose potential directions for future research. This includes a deeper investigation into the role of SMs in pathogen virulence, which could inform the development of more effective disease management strategies.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 3","pages":"Article 101551"},"PeriodicalIF":2.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143464228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing robust antioxidant defences of a mycoparasitic Trichoderma species
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-15 DOI: 10.1016/j.funbio.2025.101549
Pierson Siebe , Fricker Mark , Lichius Alexander , Sandbichler Adolf Michael , Zeilinger Susanne
The fungal genus Trichoderma contains a vast array of species well known for their high opportunistic potential and adaptability to various ecological niches. The ability of many Trichoderma species to both colonize the rhizosphere and parasitize plant pathogenic fungi has led to their use in biological pathogen control for several decades. Reactive oxygen species (ROS) are linked to both the antagonism imposed by the mycoparasite Trichoderma and the elicited defence reaction by its fungal hosts during the mycoparasitic interaction. Trichoderma spp. likely tolerate higher levels of ROS compared with some of their host species, thereby giving them an advantage during the mycoparasitic interaction.
In the present study, we investigated glutathione redox dynamics using the fluorescent reporter Grx1-roGFP2 stably expressed in Trichoderma asperellum following electrotransformation. Grx1-roGFP2 undergoes reversible changes in its excitation spectrum in response to variations in the cellular glutathione redox potential, providing a real-time indication of intracellular oxidative load. Considering the putative importance of ROS in mycoparasitic interactions, we performed live-cell imaging of the T. asperellum reporter strain interacting with the cereal pathogen Fusarium graminearum. Surprisingly, the glutathione redox potential did not change during this mycoparasitic interaction. We found no evidence that host-induced tip growth arrest within T. asperellum hyphae is induced by intracellular ROS accumulation. Furthermore, we show that the F. graminearum mycotoxins deoxynivalenol and zearalenone do not induce detectable changes in glutathione redox potential, even at very high concentrations. We infer that T. asperellum has a robust anti-oxidant defence system, supported by the observation that high concentrations of H2O2 are required to fully oxidize the reporter during in vivo calibration. We cannot rule out a role for ROS as a signal during mycoparasitic interactions, but, if present, this does not appear to be mediated by glutathione redox potential.
{"title":"Revealing robust antioxidant defences of a mycoparasitic Trichoderma species","authors":"Pierson Siebe ,&nbsp;Fricker Mark ,&nbsp;Lichius Alexander ,&nbsp;Sandbichler Adolf Michael ,&nbsp;Zeilinger Susanne","doi":"10.1016/j.funbio.2025.101549","DOIUrl":"10.1016/j.funbio.2025.101549","url":null,"abstract":"<div><div>The fungal genus <em>Trichoderma</em> contains a vast array of species well known for their high opportunistic potential and adaptability to various ecological niches. The ability of many <em>Trichoderma</em> species to both colonize the rhizosphere and parasitize plant pathogenic fungi has led to their use in biological pathogen control for several decades. Reactive oxygen species (ROS) are linked to both the antagonism imposed by the mycoparasite <em>Trichoderma</em> and the elicited defence reaction by its fungal hosts during the mycoparasitic interaction. <em>Trichoderma</em> spp. likely tolerate higher levels of ROS compared with some of their host species, thereby giving them an advantage during the mycoparasitic interaction.</div><div>In the present study, we investigated glutathione redox dynamics using the fluorescent reporter Grx1-roGFP2 stably expressed in <em>Trichoderma asperellum</em> following electrotransformation. Grx1-roGFP2 undergoes reversible changes in its excitation spectrum in response to variations in the cellular glutathione redox potential, providing a real-time indication of intracellular oxidative load. Considering the putative importance of ROS in mycoparasitic interactions, we performed live-cell imaging of the <em>T. asperellum</em> reporter strain interacting with the cereal pathogen <em>Fusarium graminearum.</em> Surprisingly, the glutathione redox potential did not change during this mycoparasitic interaction. We found no evidence that host-induced tip growth arrest within <em>T. asperellum</em> hyphae is induced by intracellular ROS accumulation. Furthermore, we show that the <em>F. graminearum</em> mycotoxins deoxynivalenol and zearalenone do not induce detectable changes in glutathione redox potential, even at very high concentrations. We infer that <em>T. asperellum</em> has a robust anti-oxidant defence system, supported by the observation that high concentrations of H<sub>2</sub>O<sub>2</sub> are required to fully oxidize the reporter during <em>in vivo</em> calibration. We cannot rule out a role for ROS as a signal during mycoparasitic interactions, but, if present, this does not appear to be mediated by glutathione redox potential.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 3","pages":"Article 101549"},"PeriodicalIF":2.9,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Hirsutella satumaensis
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-12 DOI: 10.1016/j.funbio.2025.101548
Yongli Feng , Jiaojiao Qu , Xiao Zou , Wei Cao , Yeming Zhou
Hirsutella satumaensis, an endoparasitic fungus that targets Lepidoptera insects, holds significant potential for biocontrol applications. However, its molecular study has been limited due to the absence of an efficient genetic transformation system. In this study, an optimized Agrobacterium tumefaciens-mediated transformation protocol was developed for H. satumaensis using binary vectors pBARGPE1-GFP and pK2-bar, which carry the green fluorescent protein (eGFP) and phosphinothricin resistance (bar) genes, respectively. The optimal transformation conditions included a conidial concentration of 10⁵ conidia/mL, an A. tumefaciens (strain AGL-1) concentration of OD660 = 0.6, and a 3-day co-cultivation period with 200 μM acetosyringone, resulting in an average of 121 ± 5.07 transformants. Successful integration was confirmed by green fluorescence in the transformants. Furthermore, the ribotoxin gene hirsutellin A (HtA), specific to the genus Hirsutella, was successfully overexpressed using this system. Insect bioassays demonstrated that the gpdA promoter effectively drives HtA expression in H. satumaensis. The transformation system exhibited stable gene integration, strong fluorescence, and bioactivity. This study establishes the first genetic transformation protocol for H. satumaensis, providing a valuable tool for exploring insect-pathogen interactions and the functional roles of key genes in this entomopathogenic fungus.
{"title":"Establishment of Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Hirsutella satumaensis","authors":"Yongli Feng ,&nbsp;Jiaojiao Qu ,&nbsp;Xiao Zou ,&nbsp;Wei Cao ,&nbsp;Yeming Zhou","doi":"10.1016/j.funbio.2025.101548","DOIUrl":"10.1016/j.funbio.2025.101548","url":null,"abstract":"<div><div><em>Hirsutella satumaensis</em>, an endoparasitic fungus that targets Lepidoptera insects, holds significant potential for biocontrol applications. However, its molecular study has been limited due to the absence of an efficient genetic transformation system. In this study, an optimized <em>Agrobacterium tumefaciens</em>-mediated transformation protocol was developed for <em>H. satumaensis</em> using binary vectors pBARGPE1-GFP and pK2-bar, which carry the green fluorescent protein (<em>eGFP</em>) and phosphinothricin resistance (<em>bar</em>) genes, respectively. The optimal transformation conditions included a conidial concentration of 10⁵ conidia/mL, an <em>A. tumefaciens</em> (strain AGL-1) concentration of OD<sub>660</sub> = 0.6, and a 3-day co-cultivation period with 200 μM acetosyringone, resulting in an average of 121 ± 5.07 transformants. Successful integration was confirmed by green fluorescence in the transformants. Furthermore, the ribotoxin gene <em>hirsutellin A</em> (<em>HtA</em>), specific to the genus <em>Hirsutella</em>, was successfully overexpressed using this system. Insect bioassays demonstrated that the gpdA promoter effectively drives <em>HtA</em> expression in <em>H. satumaensis</em>. The transformation system exhibited stable gene integration, strong fluorescence, and bioactivity. This study establishes the first genetic transformation protocol for <em>H. satumaensis</em>, providing a valuable tool for exploring insect-pathogen interactions and the functional roles of key genes in this entomopathogenic fungus.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 2","pages":"Article 101548"},"PeriodicalIF":2.9,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143436588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus Agaricus crocodilinus
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-11 DOI: 10.1016/j.funbio.2025.101550
Jan Sácký , Veronika Liščáková , Jan Šnábl , Jaroslav Zelenka , Jan Borovička , Tereza Leonhardt , Pavel Kotrba
The gilled mushroom Agaricus crocodilinus (Agaricaceae) analyzed in this study hyperaccumulated Cd and showed common Zn and very low Mn concentrations. To gain an insight into the handling of heavy metals in this saprotrophic species, its two genes of the cation diffusion facilitator (CDF) protein family were isolated, AcCDF1 and AcCDF2, encoding the membrane transporters of the Zn-CDF and Mn-CDF subfamilies, respectively. When expressed in the model, metal-sensitive yeast, AcCDF1 conferred marked Zn tolerance and promoted the intracellular accumulation of Zn. Green fluorescent protein (GFP) tagging of AcCDF1 visualized the functional protein predominantly in the tonoplast, indicating that AcCDF1 can mediate the transport of Zn into vacuoles, which are used for deposition of excess Zn in most fungi. AcCDF2 conferred a high degree of Mn tolerance to model yeast, in which the transport-active AcCDF2:GFP fusion was localized to the plasma membrane, suggesting a role in Mn export and thus reduced Mn accumulation. Furthermore, the AcCDF2 gene appeared to be Mn-inducible in A. crocodilinus, suggesting an Mn efflux function of AcCDF2. Neither AcCDFs nor the mutant AcCDF1 variants constructed to mimic transmembrane tetrahedral Cd transport sites manifested appreciable Cd-related phenotypes in yeast models, and further efforts are needed to elucidate the mechanism underlying Cd hyperaccumulation in A. crocodilinus.
{"title":"Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus Agaricus crocodilinus","authors":"Jan Sácký ,&nbsp;Veronika Liščáková ,&nbsp;Jan Šnábl ,&nbsp;Jaroslav Zelenka ,&nbsp;Jan Borovička ,&nbsp;Tereza Leonhardt ,&nbsp;Pavel Kotrba","doi":"10.1016/j.funbio.2025.101550","DOIUrl":"10.1016/j.funbio.2025.101550","url":null,"abstract":"<div><div>The gilled mushroom <em>Agaricus crocodilinus</em> (<em>Agaricaceae</em>) analyzed in this study hyperaccumulated Cd and showed common Zn and very low Mn concentrations. To gain an insight into the handling of heavy metals in this saprotrophic species, its two genes of the cation diffusion facilitator (CDF) protein family were isolated, Ac<em>CDF1</em> and Ac<em>CDF2</em>, encoding the membrane transporters of the Zn-CDF and Mn-CDF subfamilies, respectively. When expressed in the model, metal-sensitive yeast, Ac<em>CDF1</em> conferred marked Zn tolerance and promoted the intracellular accumulation of Zn. Green fluorescent protein (GFP) tagging of AcCDF1 visualized the functional protein predominantly in the tonoplast, indicating that AcCDF1 can mediate the transport of Zn into vacuoles, which are used for deposition of excess Zn in most fungi. Ac<em>CDF2</em> conferred a high degree of Mn tolerance to model yeast, in which the transport-active AcCDF2:GFP fusion was localized to the plasma membrane, suggesting a role in Mn export and thus reduced Mn accumulation. Furthermore, the Ac<em>CDF2</em> gene appeared to be Mn-inducible in <em>A. crocodilinus</em>, suggesting an Mn efflux function of AcCDF2. Neither AcCDFs nor the mutant AcCDF1 variants constructed to mimic transmembrane tetrahedral Cd transport sites manifested appreciable Cd-related phenotypes in yeast models, and further efforts are needed to elucidate the mechanism underlying Cd hyperaccumulation in <em>A. crocodilinus</em>.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 2","pages":"Article 101550"},"PeriodicalIF":2.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metarhizium acridum exhibits a different conidial hydrophobicity than other insect-pathogenic fungi
IF 2.9 3区 生物学 Q2 MYCOLOGY Pub Date : 2025-02-04 DOI: 10.1016/j.funbio.2025.101547
Humberto R. Medina , Drauzio E.N. Rangel
Metarhizium acridum is an insect-pathogenic fungus with a narrow host range that is used to control grasshoppers, locusts, and crickets. Its conidia show impressive resilience against UV-B radiation and heat compared to other insect pathogens. Despite this high tolerance, M. acridum is notably susceptible to various chemical stressors. The conidial surface is a monolayer formed by hydrophobins and the first barrier against stressors. However, little is known about the conidial surface properties of this fungus. This work aimed to evaluate the hydrophobic properties of the conidial surface in M. acridum ARSEF 324 and to compare them with those of other entomopathogen fungi. For this, drop profiles of water and diiodomethane on fungal cultures were analyzed, and the conidial hydrophobicity was estimated from a contact angle following the sessile drop method. The analysis of droplet profiles revealed distinct hydrophobic properties among the conidia of various insect-pathogenic fungi. The conidia of Beauveria bassiana, M. acridum, and Metarhizium robertsii exhibited high hydrophobicity, as indicated by water contact angles greater than 140°. In contrast, the conidia of Tolypocladium inflatum showed slightly lower hydrophobicity with a water contact angle below 130°. The behavior of diiodomethane further highlighted the variation in surface interactions, particularly for M. acridum, where the drop flattened instantly, indicating its low affinity for nonpolar compounds, which correlated with the extremely low tolerance of ARSEF 324 to chemicals. Overall, the study provides a deeper understanding of fungal surface properties, which could have implications for its tolerance to chemical stressors.
{"title":"Metarhizium acridum exhibits a different conidial hydrophobicity than other insect-pathogenic fungi","authors":"Humberto R. Medina ,&nbsp;Drauzio E.N. Rangel","doi":"10.1016/j.funbio.2025.101547","DOIUrl":"10.1016/j.funbio.2025.101547","url":null,"abstract":"<div><div><em>Metarhizium acridum</em> is an insect-pathogenic fungus with a narrow host range that is used to control grasshoppers, locusts, and crickets. Its conidia show impressive resilience against UV-B radiation and heat compared to other insect pathogens. Despite this high tolerance, <em>M. acridum</em> is notably susceptible to various chemical stressors. The conidial surface is a monolayer formed by hydrophobins and the first barrier against stressors. However, little is known about the conidial surface properties of this fungus. This work aimed to evaluate the hydrophobic properties of the conidial surface in <em>M. acridum</em> ARSEF 324 and to compare them with those of other entomopathogen fungi. For this, drop profiles of water and diiodomethane on fungal cultures were analyzed, and the conidial hydrophobicity was estimated from a contact angle following the sessile drop method. The analysis of droplet profiles revealed distinct hydrophobic properties among the conidia of various insect-pathogenic fungi. The conidia of <em>Beauveria bassiana</em>, <em>M. acridum</em>, and <em>Metarhizium robertsii</em> exhibited high hydrophobicity, as indicated by water contact angles greater than 140°. In contrast, the conidia of <em>Tolypocladium inflatum</em> showed slightly lower hydrophobicity with a water contact angle below 130°. The behavior of diiodomethane further highlighted the variation in surface interactions, particularly for <em>M. acridum</em>, where the drop flattened instantly, indicating its low affinity for nonpolar compounds, which correlated with the extremely low tolerance of ARSEF 324 to chemicals. Overall, the study provides a deeper understanding of fungal surface properties, which could have implications for its tolerance to chemical stressors.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 2","pages":"Article 101547"},"PeriodicalIF":2.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fungal biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1