Matthew L. Maldonado , Taufique H. Mahmood , David P. Coulter , Alison A. Coulter , Steve R. Chipps , Maddy K. Siller , Michaela L. Neal , Ayon Saha , Mark A. Kaemingk
{"title":"Water-level changes impact angler effort in a large lake: Implications for climate change","authors":"Matthew L. Maldonado , Taufique H. Mahmood , David P. Coulter , Alison A. Coulter , Steve R. Chipps , Maddy K. Siller , Michaela L. Neal , Ayon Saha , Mark A. Kaemingk","doi":"10.1016/j.fishres.2024.107156","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change is expected to influence aquatic habitats and associated fish populations, yet we know little about the impact on recreational anglers. Our goal was to explore whether interannual fluctuations in waterbody surface area and other explanatory variables could be used as indicators of changes in angler fishing effort. Our approach leveraged a combination of remotely sensed waterbody surface area, environmental and fish population data, and onsite angler survey monitoring data for Devils Lake, North Dakota, USA during the open-water fishing period (May 1st to August 31st) for 9 years (1992–2021). The information was used to develop a dynamic waterbody size-angler effort model. Changes in waterbody surface area reliably predicted changes in angler effort (r<sup>2</sup> = 0.60). Increases in waterbody surface area led to increases in angler effort, and decreases in waterbody surface area led to decreases in angler effort. Our findings show promise that remotely sensed fluctuations in waterbody surface area could be used as an indicator of interannual angler effort dynamics. Dynamic waterbody size-angler effort models could provide managers the ability to predict changes in angler effort via climate-related hydrological cycles that affect the size and distribution of waterbodies on the landscape.</p></div>","PeriodicalId":50443,"journal":{"name":"Fisheries Research","volume":"279 ","pages":"Article 107156"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165783624002200/pdfft?md5=78adc3f854d12f3937473bbefe6fa71d&pid=1-s2.0-S0165783624002200-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fisheries Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165783624002200","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is expected to influence aquatic habitats and associated fish populations, yet we know little about the impact on recreational anglers. Our goal was to explore whether interannual fluctuations in waterbody surface area and other explanatory variables could be used as indicators of changes in angler fishing effort. Our approach leveraged a combination of remotely sensed waterbody surface area, environmental and fish population data, and onsite angler survey monitoring data for Devils Lake, North Dakota, USA during the open-water fishing period (May 1st to August 31st) for 9 years (1992–2021). The information was used to develop a dynamic waterbody size-angler effort model. Changes in waterbody surface area reliably predicted changes in angler effort (r2 = 0.60). Increases in waterbody surface area led to increases in angler effort, and decreases in waterbody surface area led to decreases in angler effort. Our findings show promise that remotely sensed fluctuations in waterbody surface area could be used as an indicator of interannual angler effort dynamics. Dynamic waterbody size-angler effort models could provide managers the ability to predict changes in angler effort via climate-related hydrological cycles that affect the size and distribution of waterbodies on the landscape.
期刊介绍:
This journal provides an international forum for the publication of papers in the areas of fisheries science, fishing technology, fisheries management and relevant socio-economics. The scope covers fisheries in salt, brackish and freshwater systems, and all aspects of associated ecology, environmental aspects of fisheries, and economics. Both theoretical and practical papers are acceptable, including laboratory and field experimental studies relevant to fisheries. Papers on the conservation of exploitable living resources are welcome. Review and Viewpoint articles are also published. As the specified areas inevitably impinge on and interrelate with each other, the approach of the journal is multidisciplinary, and authors are encouraged to emphasise the relevance of their own work to that of other disciplines. The journal is intended for fisheries scientists, biological oceanographers, gear technologists, economists, managers, administrators, policy makers and legislators.