{"title":"Life and self-organization on the way to artificial intelligence for collective dynamics","authors":"Nicola Bellomo , Marina Dolfin , Jie Liao","doi":"10.1016/j.plrev.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>This work is dedicated to the study, modeling, and simulation, of the collective dynamics of interacting living entities. The first perspective is to develop a mathematical theory of swarm intelligence for the above mentioned systems. The second perspective is to design the conceptual tools for a theory of artificial intelligence. The aim is to model a dynamics where interacting entities learn from other entities as well as from the environment and external actions. Then, out of this collective learning process, each entity develops a strategy to pursue specific goals through a decision making process that leads to the dynamic. The approach is based on developments of the kinetic theory of active particles. This paper does not naively state that the problem of artificial intelligence for collective dynamics has been exhaustively considered, but some hints are proposed to contribute to such a challenging perspective in view of further developments.</p></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"51 ","pages":"Pages 1-8"},"PeriodicalIF":13.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1571064524000976/pdfft?md5=760dc8389abd8423b1d9393d25dcefd0&pid=1-s2.0-S1571064524000976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571064524000976","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work is dedicated to the study, modeling, and simulation, of the collective dynamics of interacting living entities. The first perspective is to develop a mathematical theory of swarm intelligence for the above mentioned systems. The second perspective is to design the conceptual tools for a theory of artificial intelligence. The aim is to model a dynamics where interacting entities learn from other entities as well as from the environment and external actions. Then, out of this collective learning process, each entity develops a strategy to pursue specific goals through a decision making process that leads to the dynamic. The approach is based on developments of the kinetic theory of active particles. This paper does not naively state that the problem of artificial intelligence for collective dynamics has been exhaustively considered, but some hints are proposed to contribute to such a challenging perspective in view of further developments.
期刊介绍:
Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.