Igor J. Chybicki , Juan J. Robledo-Arnuncio , Jan Bodziarczyk , Marcin Widlak , Katarzyna Meyza , Andrzej Oleksa , Bartosz Ulaszewski
{"title":"Disrupted connectivity within a metapopulation of a wind-pollinated declining conifer, Taxus baccata L.","authors":"Igor J. Chybicki , Juan J. Robledo-Arnuncio , Jan Bodziarczyk , Marcin Widlak , Katarzyna Meyza , Andrzej Oleksa , Bartosz Ulaszewski","doi":"10.1016/j.fecs.2024.100240","DOIUrl":null,"url":null,"abstract":"<div><p>Population connectivity through seed and pollen dispersal determines the genetic diversity, adaptive potential, and demography of plant metapopulations. In wind-pollinated trees, population connectivity is typically maintained by long-distance pollen flow, counteracting the genetic differentiation generated by drift and restricted seed dispersal. Although strong population fragmentation is theoretically expected to disrupt connectivity in forest trees, empirical evidence remains scarce and inconclusive. We investigated contemporary connectivity within a network of small remnant populations of a declining conifer (<em>Taxus baccata</em> L.), which have been hypothesized to be largely isolated from each other. We tested this hypothesis using molecular data for adult trees and naturally recruited seedlings from all known remnants across a fragmented landscape spanning a length of 20 km, and a specifically designed statistical approach to quantify contemporary pollen and seed migration rates between populations. We additionally assessed dispersal potential using a spatially explicit parentage analysis to estimate seed and pollen dispersal kernels within one of the remnants. Estimated pairwise migration rates between populations were barely detectable for seeds, while they were larger (up to 1.1%) and significant for pollen. Both seed and pollen migration rates decreased with geographic distance between populations, more steeply in the case of pollen migration. According to parentage-based dispersal kernels, 51.8% of seeds and 11.4% of pollen travel less than 25 m, whereas 0.2% of seeds and 36.1% of pollen travel more than 250 m from a source tree. In addition, 1.2% of pollen can travel more than 2.5 km. We showed that strong present-day population fragmentation, with separation distances over a few kilometers between small fragments, can substantially limit the connectivity of a wind-pollinated declining tree, leading to low pollen-mediated contemporary gene flow and null or virtually null demographic connectivity via seed dispersal.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000769/pdfft?md5=219d0a4115284db7075bec6b9d92f5fc&pid=1-s2.0-S2197562024000769-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000769","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Population connectivity through seed and pollen dispersal determines the genetic diversity, adaptive potential, and demography of plant metapopulations. In wind-pollinated trees, population connectivity is typically maintained by long-distance pollen flow, counteracting the genetic differentiation generated by drift and restricted seed dispersal. Although strong population fragmentation is theoretically expected to disrupt connectivity in forest trees, empirical evidence remains scarce and inconclusive. We investigated contemporary connectivity within a network of small remnant populations of a declining conifer (Taxus baccata L.), which have been hypothesized to be largely isolated from each other. We tested this hypothesis using molecular data for adult trees and naturally recruited seedlings from all known remnants across a fragmented landscape spanning a length of 20 km, and a specifically designed statistical approach to quantify contemporary pollen and seed migration rates between populations. We additionally assessed dispersal potential using a spatially explicit parentage analysis to estimate seed and pollen dispersal kernels within one of the remnants. Estimated pairwise migration rates between populations were barely detectable for seeds, while they were larger (up to 1.1%) and significant for pollen. Both seed and pollen migration rates decreased with geographic distance between populations, more steeply in the case of pollen migration. According to parentage-based dispersal kernels, 51.8% of seeds and 11.4% of pollen travel less than 25 m, whereas 0.2% of seeds and 36.1% of pollen travel more than 250 m from a source tree. In addition, 1.2% of pollen can travel more than 2.5 km. We showed that strong present-day population fragmentation, with separation distances over a few kilometers between small fragments, can substantially limit the connectivity of a wind-pollinated declining tree, leading to low pollen-mediated contemporary gene flow and null or virtually null demographic connectivity via seed dispersal.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.