{"title":"BGformer: An improved Informer model to enhance blood glucose prediction","authors":"Yuewei Xue, Shaopeng Guan, Wanhai Jia","doi":"10.1016/j.jbi.2024.104715","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately predicting blood glucose levels is crucial in diabetes management to mitigate patients’ risk of complications. However, blood glucose values exhibit instability, and existing prediction methods often struggle to capture their volatile nature, leading to inaccurate trend forecasts. To address these challenges, we propose a novel blood glucose level prediction model based on the Informer architecture: BGformer. Our model introduces a feature enhancement module and a microscale overlapping concerns mechanism. The feature enhancement module integrates periodic and trend feature extractors, enhancing the model’s ability to capture relevant information from the data. By extending the feature extraction capacity of time series data, it provides richer feature representations for analysis. Meanwhile, the microscale overlapping concerns mechanism adopts a window-based strategy, computing attention scores only within specific windows. This approach reduces computational complexity while enhancing the model’s capacity to capture local temporal dependencies. Furthermore, we introduce a dual attention enhancement module to augment the model’s expressive capability. Through prediction experiments on blood glucose values from sixteen diabetic patients, our model outperformed eight benchmark models in terms of both MAE and RMSE metrics for future 60-minute and 90-minute predictions. Our proposed scheme significantly improves the model’s dependency-capturing ability, resulting in more accurate blood glucose level predictions.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104715"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001333","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting blood glucose levels is crucial in diabetes management to mitigate patients’ risk of complications. However, blood glucose values exhibit instability, and existing prediction methods often struggle to capture their volatile nature, leading to inaccurate trend forecasts. To address these challenges, we propose a novel blood glucose level prediction model based on the Informer architecture: BGformer. Our model introduces a feature enhancement module and a microscale overlapping concerns mechanism. The feature enhancement module integrates periodic and trend feature extractors, enhancing the model’s ability to capture relevant information from the data. By extending the feature extraction capacity of time series data, it provides richer feature representations for analysis. Meanwhile, the microscale overlapping concerns mechanism adopts a window-based strategy, computing attention scores only within specific windows. This approach reduces computational complexity while enhancing the model’s capacity to capture local temporal dependencies. Furthermore, we introduce a dual attention enhancement module to augment the model’s expressive capability. Through prediction experiments on blood glucose values from sixteen diabetic patients, our model outperformed eight benchmark models in terms of both MAE and RMSE metrics for future 60-minute and 90-minute predictions. Our proposed scheme significantly improves the model’s dependency-capturing ability, resulting in more accurate blood glucose level predictions.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.