Ana Guadalupe Hernández-Acevedo , Isabel de la Luz Membrillo-Venegas , José Antonio Arcos-Casarrubias , Guillermo Aguilar-Osorio , María Aurora Martínez Trujillo , Martín Rogelio Cruz Díaz
{"title":"Experimental study and mathematical modeling of the pectinases production by Aspergillus flavipes FP-500 in an airlift bioreactor","authors":"Ana Guadalupe Hernández-Acevedo , Isabel de la Luz Membrillo-Venegas , José Antonio Arcos-Casarrubias , Guillermo Aguilar-Osorio , María Aurora Martínez Trujillo , Martín Rogelio Cruz Díaz","doi":"10.1016/j.bej.2024.109472","DOIUrl":null,"url":null,"abstract":"<div><p>Mathematical models are indispensable for designing, optimizing, and controlling large-scale bioprocesses. In the present work, the production of pectinases was studied experimentally using an internal loop airlift bioreactor, pectin as a substrate, and <em>Aspergillus flavipes</em> FP-500 as a biocatalyst. The N-tanks-in-series (NTIS) model was implemented to predict the behavior of fungal growth, pectin and dissolved oxygen consumption, pectinases production, and the oxygen mass transfer rate from gas phase to liquid culture medium. A double <em>Monod-Logistic</em> kinetic model was used to describe the biomass growth rate as a function of biomass, pectin, and dissolved oxygen concentrations. In contrast, a <em>Luedeking-Piret kinetic model</em> was used to describe the production rate of endo and exo pectinases. A hydrodynamic model was utilized to estimate gas hold-ups, volumetric mass transfer coefficients, and air inflow velocities. Good agreement was observed between the experimental data and the theoretical results, demonstrating the predictive capacity of the NTIS model to describe pectinase production, the oxygen consumption rate, and the oxygen evolution in the gas phase. The model highlighted its robust capability to capture the critical parameters of aerobic fermentation processes. Therefore, it could be used as a tool for the scalability of the airlift bioreactors.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"211 ","pages":"Article 109472"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002596","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical models are indispensable for designing, optimizing, and controlling large-scale bioprocesses. In the present work, the production of pectinases was studied experimentally using an internal loop airlift bioreactor, pectin as a substrate, and Aspergillus flavipes FP-500 as a biocatalyst. The N-tanks-in-series (NTIS) model was implemented to predict the behavior of fungal growth, pectin and dissolved oxygen consumption, pectinases production, and the oxygen mass transfer rate from gas phase to liquid culture medium. A double Monod-Logistic kinetic model was used to describe the biomass growth rate as a function of biomass, pectin, and dissolved oxygen concentrations. In contrast, a Luedeking-Piret kinetic model was used to describe the production rate of endo and exo pectinases. A hydrodynamic model was utilized to estimate gas hold-ups, volumetric mass transfer coefficients, and air inflow velocities. Good agreement was observed between the experimental data and the theoretical results, demonstrating the predictive capacity of the NTIS model to describe pectinase production, the oxygen consumption rate, and the oxygen evolution in the gas phase. The model highlighted its robust capability to capture the critical parameters of aerobic fermentation processes. Therefore, it could be used as a tool for the scalability of the airlift bioreactors.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.