CCKR signaling map, G-Protein bindings, hormonal regulation, and neural mechanisms may influence the osteogenic/cementogenic differentiation potential of hPDLSCs
{"title":"CCKR signaling map, G-Protein bindings, hormonal regulation, and neural mechanisms may influence the osteogenic/cementogenic differentiation potential of hPDLSCs","authors":"","doi":"10.1016/j.archoralbio.2024.106069","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Periodontal regeneration poses challenges due to the periodontium's complexity, relying on mesenchymal cells from the periodontal ligament (hPDLSCs) to regenerate hard tissues like bone and cementum. While some hPDLSCs have high regeneration potential (HOP-hPDLSCs), most are low potential (LOP-hPDLSCs). This study analyzed hPDLSCs from a single donor to minimize inter-individual variability and focus on key differences in differentiation potentials.</p></div><div><h3>Design</h3><p>This study used RNA-seq, genomic databases, and bioinformatics tools to explore signaling pathways (SPs), biological processes (BPs), and molecular functions (MFs) guiding HOP cells to mineralized matrix production. It also investigated limitations of LOP cells and strategies for enhancing their osteo/cementogenesis.</p></div><div><h3>Results</h3><p>In basal conditions, HOP exhibited a multifunctional gene network with higher expression of genes related to osteo/cementogenesis, cell differentiation, immune modulation, stress response, and hormonal regulation. In contrast, LOP focused on steroid hormone biosynthesis and nucleic acid maintenance. During osteo/cementogenic induction, HOP showed strong modulation of genes related to angiogenesis, cell division, mesenchymal differentiation, and extracellular matrix production. LOP demonstrated neural synaptic-related processes and preserved cellular cytoskeleton integrity. CCKR map signaling and G-protein receptor bindings gained significance during osteo/cementogenesis in HOP-hPDLSCs. Both HOP and LOP shared common BPs related to gastrointestinal and reproductive system development.</p></div><div><h3>Conclusion</h3><p>The osteo/cementogenic differentiation of HOP cells may be regulated by CCKR signaling, G-protein bindings, and specific hormonal regulation. LOP cells seem committed to neural mechanisms. This study sheds light on hPDLSCs' complex characteristics, offering a deeper understanding of their differentiation potential for future periodontal regeneration research and therapies.</p></div>","PeriodicalId":8288,"journal":{"name":"Archives of oral biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of oral biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003996924001900","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Periodontal regeneration poses challenges due to the periodontium's complexity, relying on mesenchymal cells from the periodontal ligament (hPDLSCs) to regenerate hard tissues like bone and cementum. While some hPDLSCs have high regeneration potential (HOP-hPDLSCs), most are low potential (LOP-hPDLSCs). This study analyzed hPDLSCs from a single donor to minimize inter-individual variability and focus on key differences in differentiation potentials.
Design
This study used RNA-seq, genomic databases, and bioinformatics tools to explore signaling pathways (SPs), biological processes (BPs), and molecular functions (MFs) guiding HOP cells to mineralized matrix production. It also investigated limitations of LOP cells and strategies for enhancing their osteo/cementogenesis.
Results
In basal conditions, HOP exhibited a multifunctional gene network with higher expression of genes related to osteo/cementogenesis, cell differentiation, immune modulation, stress response, and hormonal regulation. In contrast, LOP focused on steroid hormone biosynthesis and nucleic acid maintenance. During osteo/cementogenic induction, HOP showed strong modulation of genes related to angiogenesis, cell division, mesenchymal differentiation, and extracellular matrix production. LOP demonstrated neural synaptic-related processes and preserved cellular cytoskeleton integrity. CCKR map signaling and G-protein receptor bindings gained significance during osteo/cementogenesis in HOP-hPDLSCs. Both HOP and LOP shared common BPs related to gastrointestinal and reproductive system development.
Conclusion
The osteo/cementogenic differentiation of HOP cells may be regulated by CCKR signaling, G-protein bindings, and specific hormonal regulation. LOP cells seem committed to neural mechanisms. This study sheds light on hPDLSCs' complex characteristics, offering a deeper understanding of their differentiation potential for future periodontal regeneration research and therapies.
期刊介绍:
Archives of Oral Biology is an international journal which aims to publish papers of the highest scientific quality in the oral and craniofacial sciences. The journal is particularly interested in research which advances knowledge in the mechanisms of craniofacial development and disease, including:
Cell and molecular biology
Molecular genetics
Immunology
Pathogenesis
Cellular microbiology
Embryology
Syndromology
Forensic dentistry