{"title":"Influence of mineral filler characteristics on the filler–asphalt interfacial behavior","authors":"Baodong Xing , Chen Fang , Xiaobo Lyu , Weiyu Fan , Yuchao Lyu","doi":"10.1016/j.apt.2024.104636","DOIUrl":null,"url":null,"abstract":"<div><p>The knowledge of mineral filler characteristics and their impacts on filler–asphalt interfacial behavior is not systematic and completed yet. In this paper, eight mineral fillers prepared using the same milling procedure were investigated. The filler–asphalt interfacial behavior was analyzed by differential scanning calorimetric and dynamic shear rheometer tests. Results reveal that in contrast to form factor and specific surface area, particle porosity, particle density, aspect ratio, angularity index, fractal dimension and feature roughness decrease with decreasing particle size. Limestone filler exhibits more regular shape, less significant angularity and richer surface texture than basalt filler. Of all particle characteristics studied, form factor and specific surface area are suggested to be the determining factors affecting filler–asphalt interfacial behavior. Moreover, microscopic morphology analysis provides an insight to interpret the differences explored in mastic interfacial property. The results help employ applicable particle characteristics that fabricate mastic with a stable interface system.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 10","pages":"Article 104636"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003121","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The knowledge of mineral filler characteristics and their impacts on filler–asphalt interfacial behavior is not systematic and completed yet. In this paper, eight mineral fillers prepared using the same milling procedure were investigated. The filler–asphalt interfacial behavior was analyzed by differential scanning calorimetric and dynamic shear rheometer tests. Results reveal that in contrast to form factor and specific surface area, particle porosity, particle density, aspect ratio, angularity index, fractal dimension and feature roughness decrease with decreasing particle size. Limestone filler exhibits more regular shape, less significant angularity and richer surface texture than basalt filler. Of all particle characteristics studied, form factor and specific surface area are suggested to be the determining factors affecting filler–asphalt interfacial behavior. Moreover, microscopic morphology analysis provides an insight to interpret the differences explored in mastic interfacial property. The results help employ applicable particle characteristics that fabricate mastic with a stable interface system.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)