Emerging strategies for the treatment of endometriosis

{"title":"Emerging strategies for the treatment of endometriosis","authors":"","doi":"10.1016/j.bmt.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Endometriosis is an estrogen-dependent disorder of the reproductive tract, affecting approximately 10 ​% of women. The symptoms of this condition are vague and not correlated with the disease's stage. These associated symptoms significantly impact women's overall well-being. The etiology of endometriosis remains inadequately understood, with coelomic metaplasia, lymphatic and vascular dissemination being regarded as additional hypotheses in addition to the retrograde menstruation theory. Endometriosis is primarily treated with drug therapy and surgical intervention, but the recurrence rate of symptoms after five years remains approximately 50 ​%. Therefore, the advancement of more effective and safe therapies for the treatment of endometriosis is of paramount importance. In this review, we introduce the utilization of photodynamic therapy, hyperthermia, gene therapy, immunotherapy, stem cell therapy, nanotechnology, and micron technology in the management of endometriosis. The objective is to provide novel research perspectives for therapeutic approaches and facilitate future clinical translation to enhance patient outcomes.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000175/pdfft?md5=62b25ff0bb6b24e2e05534564539033a&pid=1-s2.0-S2949723X24000175-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X24000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Endometriosis is an estrogen-dependent disorder of the reproductive tract, affecting approximately 10 ​% of women. The symptoms of this condition are vague and not correlated with the disease's stage. These associated symptoms significantly impact women's overall well-being. The etiology of endometriosis remains inadequately understood, with coelomic metaplasia, lymphatic and vascular dissemination being regarded as additional hypotheses in addition to the retrograde menstruation theory. Endometriosis is primarily treated with drug therapy and surgical intervention, but the recurrence rate of symptoms after five years remains approximately 50 ​%. Therefore, the advancement of more effective and safe therapies for the treatment of endometriosis is of paramount importance. In this review, we introduce the utilization of photodynamic therapy, hyperthermia, gene therapy, immunotherapy, stem cell therapy, nanotechnology, and micron technology in the management of endometriosis. The objective is to provide novel research perspectives for therapeutic approaches and facilitate future clinical translation to enhance patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
治疗子宫内膜异位症的新策略
子宫内膜异位症是一种依赖雌激素的生殖道疾病,约有 10% 的妇女会患病。这种疾病的症状比较模糊,而且与疾病的阶段无关。这些相关症状严重影响了妇女的整体健康。人们对子宫内膜异位症的病因仍不十分清楚,除月经逆行理论外,还有一些其他的假说,如子宫内膜移行症、淋巴和血管播散等。子宫内膜异位症主要采用药物治疗和手术干预,但五年后症状复发率仍高达约 50%。因此,开发更有效、更安全的子宫内膜异位症治疗方法至关重要。在这篇综述中,我们将介绍光动力疗法、热疗、基因疗法、免疫疗法、干细胞疗法、纳米技术和微米技术在子宫内膜异位症治疗中的应用。目的是为治疗方法提供新的研究视角,并促进未来的临床转化,以提高患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
HMS-TENet: A hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation D2 receptor antagonist raclopride regulates glutamatergic neuronal activity in the pedunculopontine nucleus in a rat model of Parkinson's disease Electrospinning drug-loaded polycaprolactone/polycaprolactone-gelatin multi-functional bilayer nanofibers composite scaffold for postoperative wound healing of cutaneous squamous cell carcinoma HFF-Net: A hybrid convolutional neural network for diabetic retinopathy screening and grading Biomaterials that passively and actively target macrophages promote the regeneration of injured tissues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1