首页 > 最新文献

Biomedical Technology最新文献

英文 中文
Developing biotechnologies in organoids for liver cancer 开发治疗肝癌的有机体生物技术
Pub Date : 2024-11-26 DOI: 10.1016/j.bmt.2024.100067
Yingzhe Hu , Zheng Peng , Mengdi Qiu , Lingling Xue , Haozhen Ren , Xingyu Wu , Xinhua Zhu , Yitao Ding
Organoids, three-dimensional cellular constructs, have revolutionized in vitro culture by replicating the histological and physiological functions of organs, offering a model that closely mimics physiological conditions. Liver cancer presents a significant challenge due to its heterogeneity and the influence of the liver's microenvironment on therapeutic responses. Organoid technology addresses this complexity by simulating the tumor microenvironment in vitro, capturing the heterogeneity of liver cancer, and facilitating personalized treatment approaches. This study explores the integration of organoids in liver cancer research, focusing on genetic and phenotypic fidelity, disease modeling, and drug screening. We discuss the latest advancements in biotechnology, including CRISPR/Cas9, 3D bioprinting, and microfluidics, and their role in personalized medicine. Despite challenges in scalability and variability, organoids offer a promising avenue for liver cancer research and precision oncology, with the potential to transform our understanding and treatment of this disease.
器官组织是一种三维细胞构建体,通过复制器官的组织学和生理功能,提供了一种近似生理条件的模型,从而彻底改变了体外培养。肝癌因其异质性和肝脏微环境对治疗反应的影响而成为一项重大挑战。类器官技术通过在体外模拟肿瘤微环境、捕捉肝癌的异质性和促进个性化治疗方法,解决了这一复杂性。本研究探讨了有机体在肝癌研究中的整合,重点关注遗传和表型保真度、疾病建模和药物筛选。我们讨论了生物技术的最新进展,包括CRISPR/Cas9、三维生物打印和微流控技术,以及它们在个性化医疗中的作用。尽管在可扩展性和可变性方面存在挑战,但器官组织为肝癌研究和精准肿瘤学提供了一个前景广阔的途径,有可能改变我们对这种疾病的理解和治疗。
{"title":"Developing biotechnologies in organoids for liver cancer","authors":"Yingzhe Hu ,&nbsp;Zheng Peng ,&nbsp;Mengdi Qiu ,&nbsp;Lingling Xue ,&nbsp;Haozhen Ren ,&nbsp;Xingyu Wu ,&nbsp;Xinhua Zhu ,&nbsp;Yitao Ding","doi":"10.1016/j.bmt.2024.100067","DOIUrl":"10.1016/j.bmt.2024.100067","url":null,"abstract":"<div><div>Organoids, three-dimensional cellular constructs, have revolutionized in vitro culture by replicating the histological and physiological functions of organs, offering a model that closely mimics physiological conditions. Liver cancer presents a significant challenge due to its heterogeneity and the influence of the liver's microenvironment on therapeutic responses. Organoid technology addresses this complexity by simulating the tumor microenvironment in vitro, capturing the heterogeneity of liver cancer, and facilitating personalized treatment approaches. This study explores the integration of organoids in liver cancer research, focusing on genetic and phenotypic fidelity, disease modeling, and drug screening. We discuss the latest advancements in biotechnology, including CRISPR/Cas9, 3D bioprinting, and microfluidics, and their role in personalized medicine. Despite challenges in scalability and variability, organoids offer a promising avenue for liver cancer research and precision oncology, with the potential to transform our understanding and treatment of this disease.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"9 ","pages":"Article 100067"},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Space manufacturing of a bone tissue destined for patients on Earth? 在太空中为地球上的病人制造骨组织?
Pub Date : 2024-11-26 DOI: 10.1016/j.bmt.2024.10.004
Vladimir S. Komlev , Vladislav A. Parfenov , Pavel A. Karalkin , Stanislav V. Petrov , Frederico D.A.S. Pereira , Elizaveta V. Koudan , Aleksandr A. Levin , Margarita A. Golberg , Alexander Yu. Fedotov , Igor V. Smirnov , Andrey D. Kaprin , Natalia S. Sergeeva , Irina K. Sviridova , Valentina A. Kirsanova , Suraja A. Akhmedova , Georgy V. Mamin , Marat R. Gafurov , Alexey N. Gurin , Yusef D. Khesuani , Yury M. Urlichich
Space exploration is perhaps one of the most difficult tasks ever undertaken since the emergence of humankind. The International Space Station is a unique platform for advanced technology research that is not possible anywhere else. Tissue engineering in outer space, where state of the gravity can be ‘turned off’ or ‘turned on’ in the case of application of centrifuges, is a new research field with high-value goals. The microgravity conditions allow to design novel biomaterials that cannot be produced on Earth but benefit the Earth civilisation. Developing and manufacturing a biomaterial to address a space-based challenge may lead to novel biomaterials that will find important applications in medicine on Earth and/or for long-duration space missions. Today, there are only a handful of emerging biomaterials that have been tested in space, none of which have been used for their eventual function. This paper presents advances in space technology via 3D magnetic assembly: the development of synthetic bone graft constructs aboard the International Space Station during expeditions 60/61 with clear evidence of the materials' functioning in preclinical (animal) tests on Earth. The results indicate high osteoconductivity and ultimately a good rate of tissue formation by the bone grafts prepared in space.
太空探索也许是人类有史以来最艰巨的任务之一。国际空间站是进行先进技术研究的独特平台,这是其他任何地方都无法实现的。在外层空间,重力状态可以 "关闭 "或 "打开"(在应用离心机的情况下),组织工程是一个具有高价值目标的新研究领域。在微重力条件下,可以设计出地球上无法生产但却有益于地球文明的新型生物材料。开发和制造一种生物材料来应对天基挑战,可能会导致新型生物材料在地球医学和/或长期太空任务中得到重要应用。目前,只有少数几种新兴生物材料在太空中进行过测试,但都没有用于实现其最终功能。本文介绍了通过三维磁性组装技术在太空技术方面取得的进展:在 60/61 号探险期间,在国际空间站上开发了合成骨移植结构,并在地球上的临床前(动物)试验中明确证明了这些材料的功能。结果表明,在太空中制备的骨移植物具有很高的骨传导性,最终组织形成率也很高。
{"title":"Space manufacturing of a bone tissue destined for patients on Earth?","authors":"Vladimir S. Komlev ,&nbsp;Vladislav A. Parfenov ,&nbsp;Pavel A. Karalkin ,&nbsp;Stanislav V. Petrov ,&nbsp;Frederico D.A.S. Pereira ,&nbsp;Elizaveta V. Koudan ,&nbsp;Aleksandr A. Levin ,&nbsp;Margarita A. Golberg ,&nbsp;Alexander Yu. Fedotov ,&nbsp;Igor V. Smirnov ,&nbsp;Andrey D. Kaprin ,&nbsp;Natalia S. Sergeeva ,&nbsp;Irina K. Sviridova ,&nbsp;Valentina A. Kirsanova ,&nbsp;Suraja A. Akhmedova ,&nbsp;Georgy V. Mamin ,&nbsp;Marat R. Gafurov ,&nbsp;Alexey N. Gurin ,&nbsp;Yusef D. Khesuani ,&nbsp;Yury M. Urlichich","doi":"10.1016/j.bmt.2024.10.004","DOIUrl":"10.1016/j.bmt.2024.10.004","url":null,"abstract":"<div><div>Space exploration is perhaps one of the most difficult tasks ever undertaken since the emergence of humankind. The International Space Station is a unique platform for advanced technology research that is not possible anywhere else. Tissue engineering in outer space, where state of the gravity can be ‘turned off’ or ‘turned on’ in the case of application of centrifuges, is a new research field with high-value goals. The microgravity conditions allow to design novel biomaterials that cannot be produced on Earth but benefit the Earth civilisation. Developing and manufacturing a biomaterial to address a space-based challenge may lead to novel biomaterials that will find important applications in medicine on Earth and/or for long-duration space missions. Today, there are only a handful of emerging biomaterials that have been tested in space, none of which have been used for their eventual function. This paper presents advances in space technology <em>via</em> 3D magnetic assembly: the development of synthetic bone graft constructs aboard the International Space Station during expeditions 60/61 with clear evidence of the materials' functioning in preclinical (animal) tests on Earth. The results indicate high osteoconductivity and ultimately a good rate of tissue formation by the bone grafts prepared in space.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"9 ","pages":"Article 100064"},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial hydrogels for bacteria-infected wound treatment 用于治疗细菌感染伤口的抗菌水凝胶
Pub Date : 2024-11-21 DOI: 10.1016/j.bmt.2024.11.001
Wenhan Li , Quanchi Chen , Yanyu Ma , Haiwen Su , Haoyu Ren , Huan Wang
Bacteria-infected wounds are enormous clinical obstacles and cause huge burdens to patients and society. Recently, many biomaterials are designed to treat bacterial infected wounds. Among various biomaterials, antibacterial hydrogels are one of the most recommended groups due to their ability to load antibacterial drugs and cover wounds while maintaining a moist environment. In this review, we present the progress in antibacterial hydrogels for bacteria-infected wound treatment. We first summarize the pathophysiology of bacteria-infected wounds, which demonstrates the clinical manifestations and offers clinical therapy projects. Afterwards, we describe the different morphologies of antibacterial hydrogels. Then, we focus on the various practical applications and therapeutic effects of antibacterial hydrogels. At last, the recent problems and outlook of antibacterial hydrogels for bacteria-infected wound healing are summarized. We hope this review can inspire the development of bacteria-infected wound treatment and the related biomedical fields.
细菌感染伤口是巨大的临床障碍,给患者和社会造成了巨大负担。近年来,许多生物材料被设计用于治疗细菌感染伤口。在各种生物材料中,抗菌水凝胶是最值得推荐的一类,因为它既能负载抗菌药物,又能覆盖伤口,同时还能保持湿润的环境。在这篇综述中,我们将介绍用于细菌感染伤口治疗的抗菌水凝胶的研究进展。我们首先总结了细菌感染伤口的病理生理学,展示了其临床表现,并提供了临床治疗项目。随后,我们介绍了抗菌水凝胶的不同形态。然后,重点介绍了抗菌水凝胶的各种实际应用和治疗效果。最后,总结了抗菌水凝胶在细菌感染伤口愈合方面的最新问题和前景。希望这篇综述能对细菌感染伤口治疗及相关生物医学领域的发展有所启发。
{"title":"Antibacterial hydrogels for bacteria-infected wound treatment","authors":"Wenhan Li ,&nbsp;Quanchi Chen ,&nbsp;Yanyu Ma ,&nbsp;Haiwen Su ,&nbsp;Haoyu Ren ,&nbsp;Huan Wang","doi":"10.1016/j.bmt.2024.11.001","DOIUrl":"10.1016/j.bmt.2024.11.001","url":null,"abstract":"<div><div>Bacteria-infected wounds are enormous clinical obstacles and cause huge burdens to patients and society. Recently, many biomaterials are designed to treat bacterial infected wounds. Among various biomaterials, antibacterial hydrogels are one of the most recommended groups due to their ability to load antibacterial drugs and cover wounds while maintaining a moist environment. In this review, we present the progress in antibacterial hydrogels for bacteria-infected wound treatment. We first summarize the pathophysiology of bacteria-infected wounds, which demonstrates the clinical manifestations and offers clinical therapy projects. Afterwards, we describe the different morphologies of antibacterial hydrogels. Then, we focus on the various practical applications and therapeutic effects of antibacterial hydrogels. At last, the recent problems and outlook of antibacterial hydrogels for bacteria-infected wound healing are summarized. We hope this review can inspire the development of bacteria-infected wound treatment and the related biomedical fields.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"9 ","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomaterial-based circular RNA therapeutic strategy for repairing intervertebral disc degeneration 修复椎间盘变性的基于生物材料的环状 RNA 治疗策略
Pub Date : 2024-11-21 DOI: 10.1016/j.bmt.2024.09.002
Hongze Chang, Feng Cai, Xiaohu Li, Ang Li, Yan Zhang, Xiaolong Yang, Xiaodong Liu
Intervertebral disc degeneration (IDD) is the leading cause of low-back pain, which brings huge threaten to patients' life and workability. However, IDD's pathophysiology is still a puzzle, thus conventional conservative therapy leads to little success. Among all advanced therapies, the rising gene therapy might be the most promising, which combats diseases by the long-term expression of therapeutic proteins, silencing pathological genes, or editing genes. Since circular RNA (circRNA) is a critical regulator in nucleus pulposus cells' proliferation, apoptosis and extracellular matrix metabolism, making it an important research object for IDD repair. To target the pathogenic gene, silencing gene medicines carried by biomaterials have produced interesting breakthroughs in the safe, manageable, and effective administration. In this review, we took an insight into circRNA-related properties and biological processes, so as to inspire IDD treatment. At the same time, we focused on the circRNA related therapies for the treatment of IDDs by using biomaterial-based delivery systems. To note, we also discussed the perspectives of biomaterial-delivered gene therapies as effective means from the frontier needs in biomedicines, to facilitate the rapid development of biomaterial-based delivery systems.
椎间盘退变(IDD)是导致腰背痛的主要原因,给患者的生活和工作带来巨大威胁。然而,IDD 的病理生理学仍是一个谜,因此传统的保守疗法收效甚微。在所有先进疗法中,正在兴起的基因疗法可能是最有前途的,它通过长期表达治疗蛋白、沉默病理基因或编辑基因来对抗疾病。由于环状核糖核酸(circRNA)是核髓质细胞增殖、凋亡和细胞外基质代谢的重要调节因子,因此成为IDD修复的重要研究对象。针对致病基因,以生物材料为载体的沉默基因药物在安全、可控和有效用药方面取得了令人瞩目的突破。在这篇综述中,我们深入探讨了 circRNA 的相关特性和生物学过程,以期对 IDD 的治疗有所启发。同时,我们还关注了利用基于生物材料的传输系统治疗IDD的circRNA相关疗法。此外,我们还从生物医学的前沿需求出发,探讨了生物材料递送基因疗法作为有效手段的前景,以促进生物材料递送系统的快速发展。
{"title":"Biomaterial-based circular RNA therapeutic strategy for repairing intervertebral disc degeneration","authors":"Hongze Chang,&nbsp;Feng Cai,&nbsp;Xiaohu Li,&nbsp;Ang Li,&nbsp;Yan Zhang,&nbsp;Xiaolong Yang,&nbsp;Xiaodong Liu","doi":"10.1016/j.bmt.2024.09.002","DOIUrl":"10.1016/j.bmt.2024.09.002","url":null,"abstract":"<div><div>Intervertebral disc degeneration (IDD) is the leading cause of low-back pain, which brings huge threaten to patients' life and workability. However, IDD's pathophysiology is still a puzzle, thus conventional conservative therapy leads to little success. Among all advanced therapies, the rising gene therapy might be the most promising, which combats diseases by the long-term expression of therapeutic proteins, silencing pathological genes, or editing genes. Since circular RNA (circRNA) is a critical regulator in nucleus pulposus cells' proliferation, apoptosis and extracellular matrix metabolism, making it an important research object for IDD repair. To target the pathogenic gene, silencing gene medicines carried by biomaterials have produced interesting breakthroughs in the safe, manageable, and effective administration. In this review, we took an insight into circRNA-related properties and biological processes, so as to inspire IDD treatment. At the same time, we focused on the circRNA related therapies for the treatment of IDDs by using biomaterial-based delivery systems. To note, we also discussed the perspectives of biomaterial-delivered gene therapies as effective means from the frontier needs in biomedicines, to facilitate the rapid development of biomaterial-based delivery systems.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"9 ","pages":"Article 100057"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ordered micro-nano structured biomaterials for wound healing 用于伤口愈合的有序微纳结构生物材料
Pub Date : 2024-11-13 DOI: 10.1016/j.bmt.2024.09.001
Wanqing Weng , Li Wang , Lu Fan , Xiaoya Ding , Xiaocheng Wang
The complexity of wound healing, influenced by both external factors and internal pathological mechanisms, presents a significant challenge in clinical treatment. However, strategically designed micro-nano structured scaffolds show great potential in enhancing wound healing. This article reviews groundbreaking research on ordered micro-nano structures for wound repair and tissue regeneration, highlighting their crucial roles in regulating cell behavior, promoting cell differentiation, balancing the immune microenvironment, and providing antibacterial properties. Subsequently, we provide a detailed overview of advanced technologies used to fabricate these precision structures, including template replication, electrospinning, microfluidics, and 3D printing. Finally, we discuss the challenges and future directions for developing finely structured materials, considering both the current achievements and existing limitations.
伤口愈合的复杂性受到外部因素和内部病理机制的双重影响,给临床治疗带来了巨大挑战。然而,经过战略性设计的微纳结构支架在促进伤口愈合方面显示出巨大的潜力。本文回顾了有序微纳结构在伤口修复和组织再生方面的突破性研究,强调了它们在调节细胞行为、促进细胞分化、平衡免疫微环境和提供抗菌特性方面的关键作用。随后,我们详细介绍了用于制造这些精密结构的先进技术,包括模板复制、电纺丝、微流控和三维打印。最后,考虑到当前的成就和现有的局限性,我们讨论了开发精细结构材料所面临的挑战和未来的发展方向。
{"title":"Ordered micro-nano structured biomaterials for wound healing","authors":"Wanqing Weng ,&nbsp;Li Wang ,&nbsp;Lu Fan ,&nbsp;Xiaoya Ding ,&nbsp;Xiaocheng Wang","doi":"10.1016/j.bmt.2024.09.001","DOIUrl":"10.1016/j.bmt.2024.09.001","url":null,"abstract":"<div><div>The complexity of wound healing, influenced by both external factors and internal pathological mechanisms, presents a significant challenge in clinical treatment. However, strategically designed micro-nano structured scaffolds show great potential in enhancing wound healing. This article reviews groundbreaking research on ordered micro-nano structures for wound repair and tissue regeneration, highlighting their crucial roles in regulating cell behavior, promoting cell differentiation, balancing the immune microenvironment, and providing antibacterial properties. Subsequently, we provide a detailed overview of advanced technologies used to fabricate these precision structures, including template replication, electrospinning, microfluidics, and 3D printing. Finally, we discuss the challenges and future directions for developing finely structured materials, considering both the current achievements and existing limitations.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"8 ","pages":"Pages 104-114"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HMS-TENet: A hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation HMS-TENet:基于脑电图和眼电图的分层多尺度拓扑增强网络,用于驾驶员警惕性估计
Pub Date : 2024-10-28 DOI: 10.1016/j.bmt.2024.10.003
Meng Tang , Pengrui Li , Haokai Zhang , Liu Deng , Shihong Liu , Qingyuan Zheng , Hongli Chang , Changming Zhao , Manqing Wang , Guilai Zuo , Dongrui Gao
Driving vigilance estimation is an important task for traffic safety. Nowadays, electroencephalography (EEG) and electrooculography (EOG) have made some achievements in vigilance estimation, but there are still some challenges: 1) The traditional approachs with direct multimodal fusion may face the problems of information redundancy and data dimensionality mismatch; 2) Capture key discriminative features during multimodal fusion without losing specific patterns to each modality. In order to solve the above problems, this paper proposes a approach with fusion of EEG and EOG features in split bands, which not only preserves the information about brain activities in different bands of EEG, but also effectively integrates the relevant information of EOG. On this basis, we further propose a hierarchical multi-scale topological enhanced network (HMS-TENet). This network first introduces a pyramid pooling structure (PPS) to capture contextual relationships from different discriminative perspectives. And then we design a selective convolutional structure (SCS) for adaptive sense-field selection, which enables us to mine the desired discriminative information in small-size features. In addition, we design a topology self-aware attention to enhance the learning of representations of complex topological relationships among EEG channels. Finally, the output of the model can be selected for both regression and classification tasks, providing higher flexibility and adaptability. We demonstrate the robustness, generalizability, and utility of the proposed method based on intra-subject and cross-subject experiments on the SEED-VIG public dataset. Codes are available at https://github.com/tangmeng28/HMS-TENet.
驾驶警觉性估计是交通安全的一项重要任务。目前,脑电图(EEG)和脑电图(EOG)在警觉性估计方面取得了一些成果,但仍面临一些挑战:1) 传统的直接多模态融合方法可能面临信息冗余和数据维度不匹配的问题;2) 在多模态融合过程中捕捉关键的判别特征,同时不丢失每种模态的特定模式。为了解决上述问题,本文提出了一种分波段脑电图和眼动图特征融合的方法,既保留了脑电图不同波段的脑活动信息,又有效地整合了眼动图的相关信息。在此基础上,我们进一步提出了分层多尺度拓扑增强网络(HMS-TENet)。该网络首先引入了金字塔池化结构(PPS),从不同的判别角度捕捉上下文关系。然后,我们设计了用于自适应感知场选择的选择性卷积结构(SCS),这使我们能够在小尺寸特征中挖掘所需的判别信息。此外,我们还设计了一种拓扑自我感知注意力,以加强对脑电图通道间复杂拓扑关系的表征学习。最后,该模型的输出可以选择用于回归和分类任务,从而提供更高的灵活性和适应性。我们在 SEED-VIG 公共数据集上进行的主体内和跨主体实验证明了所提方法的稳健性、通用性和实用性。代码见 https://github.com/tangmeng28/HMS-TENet。
{"title":"HMS-TENet: A hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation","authors":"Meng Tang ,&nbsp;Pengrui Li ,&nbsp;Haokai Zhang ,&nbsp;Liu Deng ,&nbsp;Shihong Liu ,&nbsp;Qingyuan Zheng ,&nbsp;Hongli Chang ,&nbsp;Changming Zhao ,&nbsp;Manqing Wang ,&nbsp;Guilai Zuo ,&nbsp;Dongrui Gao","doi":"10.1016/j.bmt.2024.10.003","DOIUrl":"10.1016/j.bmt.2024.10.003","url":null,"abstract":"<div><div>Driving vigilance estimation is an important task for traffic safety. Nowadays, electroencephalography (EEG) and electrooculography (EOG) have made some achievements in vigilance estimation, but there are still some challenges: 1) The traditional approachs with direct multimodal fusion may face the problems of information redundancy and data dimensionality mismatch; 2) Capture key discriminative features during multimodal fusion without losing specific patterns to each modality. In order to solve the above problems, this paper proposes a approach with fusion of EEG and EOG features in split bands, which not only preserves the information about brain activities in different bands of EEG, but also effectively integrates the relevant information of EOG. On this basis, we further propose a hierarchical multi-scale topological enhanced network (HMS-TENet). This network first introduces a pyramid pooling structure (PPS) to capture contextual relationships from different discriminative perspectives. And then we design a selective convolutional structure (SCS) for adaptive sense-field selection, which enables us to mine the desired discriminative information in small-size features. In addition, we design a topology self-aware attention to enhance the learning of representations of complex topological relationships among EEG channels. Finally, the output of the model can be selected for both regression and classification tasks, providing higher flexibility and adaptability. We demonstrate the robustness, generalizability, and utility of the proposed method based on intra-subject and cross-subject experiments on the SEED-VIG public dataset. Codes are available at <span><span>https://github.com/tangmeng28/HMS-TENet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"8 ","pages":"Pages 92-103"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D2 receptor antagonist raclopride regulates glutamatergic neuronal activity in the pedunculopontine nucleus in a rat model of Parkinson's disease 在帕金森病大鼠模型中,D2 受体拮抗剂拉克必利可调节足底核的谷氨酸能神经元活动
Pub Date : 2024-10-25 DOI: 10.1016/j.bmt.2024.10.002
Hongli Chang , Bo Liu , Hongguang Chang , Na Li , Min Xu , Guilai Zuo , Wubing He , Xuenan Wang
Parkinson disease (PD) is defined by the loss of dopamine (DA). Changes in the pedunculopontine nucleus (PPN), particularly in local field potential (LFP), can be attributed to deficits in DA and DA receptor expression levels. PPN is a heterogeneous nucleus consisting of cholinergic, γ-aminobutyric acid (GABAergic), and glutamatergic neurons. However, it is unclear whether low levels of DA receptors affect the activity of different PPN neuron types. We record the neuronal activity of PPN by administering the selective dopamine D1 and D2 receptor antagonists, SCH23390 and Raclopride, respectively. This study discover that the firing rates of glutamatergic neurons could be normalized, and their firing patterns were more consistent in lesioned rats treated with raclopride. Raclopride administration could correct the increased coherence and phase locking between glutamatergic spikes and beta-band oscillatory activity in lesioned rats. Raclopride administration correct the increased coherence and phase locking between glutamatergic spikes and beta-band oscillatory activity in lesioned rats.
帕金森病(PD)的定义是多巴胺(DA)的丧失。足底核(PPN)的变化,尤其是局部场电位(LFP)的变化,可归因于 DA 和 DA 受体表达水平的缺陷。PPN 是一个由胆碱能、γ-氨基丁酸(GABA)能和谷氨酸能神经元组成的异质性核团。然而,目前还不清楚低水平的 DA 受体是否会影响不同类型 PPN 神经元的活动。我们分别使用选择性多巴胺 D1 和 D2 受体拮抗剂 SCH23390 和 Raclopride 记录 PPN 神经元的活动。研究发现,使用拉氯必利治疗的病变大鼠谷氨酸能神经元的发射率可恢复正常,其发射模式也更加一致。服用拉氯必利可纠正病变大鼠谷氨酸能尖峰与β波段振荡活动之间增加的一致性和锁相。服用拉氯必利可纠正病变大鼠谷氨酸能尖峰与β波段振荡活动之间增加的相干性和锁相。
{"title":"D2 receptor antagonist raclopride regulates glutamatergic neuronal activity in the pedunculopontine nucleus in a rat model of Parkinson's disease","authors":"Hongli Chang ,&nbsp;Bo Liu ,&nbsp;Hongguang Chang ,&nbsp;Na Li ,&nbsp;Min Xu ,&nbsp;Guilai Zuo ,&nbsp;Wubing He ,&nbsp;Xuenan Wang","doi":"10.1016/j.bmt.2024.10.002","DOIUrl":"10.1016/j.bmt.2024.10.002","url":null,"abstract":"<div><div>Parkinson disease (PD) is defined by the loss of dopamine (DA). Changes in the pedunculopontine nucleus (PPN), particularly in local field potential (LFP), can be attributed to deficits in DA and DA receptor expression levels. PPN is a heterogeneous nucleus consisting of cholinergic, γ-aminobutyric acid (GABAergic), and glutamatergic neurons. However, it is unclear whether low levels of DA receptors affect the activity of different PPN neuron types. We record the neuronal activity of PPN by administering the selective dopamine D1 and D2 receptor antagonists, SCH23390 and Raclopride, respectively. This study discover that the firing rates of glutamatergic neurons could be normalized, and their firing patterns were more consistent in lesioned rats treated with raclopride. Raclopride administration could correct the increased coherence and phase locking between glutamatergic spikes and beta-band oscillatory activity in lesioned rats. Raclopride administration correct the increased coherence and phase locking between glutamatergic spikes and beta-band oscillatory activity in lesioned rats.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"8 ","pages":"Pages 81-91"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospinning drug-loaded polycaprolactone/polycaprolactone-gelatin multi-functional bilayer nanofibers composite scaffold for postoperative wound healing of cutaneous squamous cell carcinoma 用于皮肤鳞状细胞癌术后伤口愈合的电纺丝药物负载聚己内酯/聚己内酯-明胶多功能双层纳米纤维复合支架
Pub Date : 2024-10-09 DOI: 10.1016/j.bmt.2024.10.001
Yongteng Song , Qingxi Hu , Suihong Liu , Guotai Yao , Haiguang Zhang
Cutaneous squamous cell carcinoma (cSCC) tumor resection surgery poses challenges due to incomplete cancer cell removal, which increases the risk of local recurrence and micrometastasis, while large-scale surgical wounds are susceptible to severe infections. Therefore, a drug-loaded multi-functional bilayer nanofibers skin scaffold was fabricated for postoperative wound care of cSCC. Briefly, the antibacterial drug enrofloxacin (ENR) was loaded into polycaprolactone (PCL) nanofibers using electrospinning to form an antibacterial nanofiber membrane (PCL-ENR) as the outer layer of scaffold. The anticancer drug bleomycin (BLM) was loaded into PCL/Gelatin (Gel) nanofibers via electrospinning to form an anticancer nanofiber membrane (PG-BLM) as the inner layer of scaffold. ENR and BLM were successfully loaded into the scaffold. The scaffold had excellent physicochemical properties, with the outer layer exhibiting hydrophobicity and excellent antibacterial activity, and the inner layer showing hydrophilicity and outstanding anticancer activity. The elongation at break and tensile modulus of the scaffold were 26.35 ​± ​1.61 ​% and 15.25 ​± ​1.56 ​MPa, respectively. In vitro and in vivo experiments suggested that the scaffold not only has good biocompatibility to promote wound healing but also could inhibit the proliferation of A431 ​cells, which has great potential clinical application in postoperative wound care of cSCC.
皮肤鳞状细胞癌(cSCC)肿瘤切除手术因癌细胞切除不彻底而面临挑战,这增加了局部复发和微转移的风险,同时大面积的手术伤口容易造成严重感染。因此,我们制作了一种载药多功能双层纳米纤维皮肤支架,用于 cSCC 术后伤口护理。简而言之,抗菌药物恩诺沙星(ENR)通过电纺丝被负载到聚己内酯(PCL)纳米纤维中,形成抗菌纳米纤维膜(PCL-ENR)作为支架的外层。抗癌药物博莱霉素(BLM)通过电纺丝被负载到 PCL/明胶(Gelatin)纳米纤维中,形成抗癌纳米纤维膜(PG-BLM),作为支架的内层。ENR和BLM被成功载入支架。该支架具有优异的理化特性,外层具有疏水性和出色的抗菌活性,内层具有亲水性和出色的抗癌活性。支架的断裂伸长率和拉伸模量分别为 26.35 ± 1.61 % 和 15.25 ± 1.56 兆帕。体外和体内实验表明,该支架不仅具有良好的生物相容性,能促进伤口愈合,还能抑制A431细胞的增殖,在cSCC术后伤口护理方面具有很大的临床应用潜力。
{"title":"Electrospinning drug-loaded polycaprolactone/polycaprolactone-gelatin multi-functional bilayer nanofibers composite scaffold for postoperative wound healing of cutaneous squamous cell carcinoma","authors":"Yongteng Song ,&nbsp;Qingxi Hu ,&nbsp;Suihong Liu ,&nbsp;Guotai Yao ,&nbsp;Haiguang Zhang","doi":"10.1016/j.bmt.2024.10.001","DOIUrl":"10.1016/j.bmt.2024.10.001","url":null,"abstract":"<div><div>Cutaneous squamous cell carcinoma (cSCC) tumor resection surgery poses challenges due to incomplete cancer cell removal, which increases the risk of local recurrence and micrometastasis, while large-scale surgical wounds are susceptible to severe infections. Therefore, a drug-loaded multi-functional bilayer nanofibers skin scaffold was fabricated for postoperative wound care of cSCC. Briefly, the antibacterial drug enrofloxacin (ENR) was loaded into polycaprolactone (PCL) nanofibers using electrospinning to form an antibacterial nanofiber membrane (PCL-ENR) as the outer layer of scaffold. The anticancer drug bleomycin (BLM) was loaded into PCL/Gelatin (Gel) nanofibers via electrospinning to form an anticancer nanofiber membrane (PG-BLM) as the inner layer of scaffold. ENR and BLM were successfully loaded into the scaffold. The scaffold had excellent physicochemical properties, with the outer layer exhibiting hydrophobicity and excellent antibacterial activity, and the inner layer showing hydrophilicity and outstanding anticancer activity. The elongation at break and tensile modulus of the scaffold were 26.35 ​± ​1.61 ​% and 15.25 ​± ​1.56 ​MPa, respectively. <em>In vitro</em> and <em>in vivo</em> experiments suggested that the scaffold not only has good biocompatibility to promote wound healing but also could inhibit the proliferation of A431 ​cells, which has great potential clinical application in postoperative wound care of cSCC.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"8 ","pages":"Pages 65-80"},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HFF-Net: A hybrid convolutional neural network for diabetic retinopathy screening and grading HFF-Net:用于糖尿病视网膜病变筛查和分级的混合卷积神经网络
Pub Date : 2024-10-07 DOI: 10.1016/j.bmt.2024.09.004
Muhammad Hassaan Ashraf , Hamed Alghamdi
Diabetic Retinopathy (DR) is a leading cause of vision loss among diabetic patients, necessitating effective screening and grading for timely intervention. Regular screening significantly increases the workload of ophthalmologists, and accurate grading into stages—mild, moderate, severe, and proliferative—is crucial for monitoring disease progression. While Computer-Aided Diagnosis (CAD) systems can alleviate this burden, existing Convolutional Neural Network (CNN)-based frameworks use fixed-size kernels in a linear feed-forward manner. This approach can lead to information loss in the initial stages due to limited feature utilization across adjacent layers. To address this limitation, we propose a Hierarchical Features Fusion Convolutional Neural Network (HFF-Net) within a Diabetic Retinopathy Screening and Grading (DRSG) framework. The framework includes preprocessing to extract regions of interest from fundus images (FIs), enhancement using Contrast Limited Adaptive Histogram Equalization (CLAHE), and data augmentation for class balancing and overfitting mitigation. HFF-Net extracts multiscale features that fused at multiple levels within the network, utilizing the swish activation function for improved learning stability. We evaluated HFF-Net against several state-of-the-art CNN classifiers within the DRSG framework. Experimental results demonstrate that HFF-Net achieves a grading accuracy of 73.77 ​%, surpassing the second-best model by 3.51 percentage points (a relative improvement of approximately 5 ​%), and attains a screening accuracy of 98.70 ​% using only 1.18 million parameters. These findings highlight HFF-Net's potential as an efficient and effective tool in CAD systems for DR screening and grading.
©2017 Elsevier Inc. All rights reserved.
糖尿病视网膜病变(DR)是导致糖尿病患者视力丧失的主要原因,因此必须进行有效筛查和分级,以便及时干预。定期筛查大大增加了眼科医生的工作量,而准确分级--轻度、中度、重度和增殖期--对监测疾病进展至关重要。虽然计算机辅助诊断(CAD)系统可以减轻这一负担,但现有的基于卷积神经网络(CNN)的框架以线性前馈方式使用固定大小的核。由于相邻层之间的特征利用率有限,这种方法可能会导致初始阶段的信息丢失。为了解决这一局限性,我们在糖尿病视网膜病变筛查和分级(DRSG)框架内提出了分层特征融合卷积神经网络(HFF-Net)。该框架包括从眼底图像(FIs)中提取感兴趣区域的预处理、使用对比度受限自适应直方图均衡化(CLAHE)进行增强,以及用于类平衡和减轻过拟合的数据增强。HFF-Net 可提取多尺度特征,并在网络内多层次融合,利用swish 激活函数提高学习稳定性。我们在 DRSG 框架内对 HFF-Net 与几种最先进的 CNN 分类器进行了评估。实验结果表明,HFF-Net 的分级准确率达到了 73.77%,比排名第二的模型高出 3.51 个百分点(相对提高约 5%),并且仅使用 118 万个参数就达到了 98.70% 的筛选准确率。这些发现凸显了 HFF-Net 作为 CAD 系统中用于 DR 筛选和分级的高效工具的潜力。保留所有权利。
{"title":"HFF-Net: A hybrid convolutional neural network for diabetic retinopathy screening and grading","authors":"Muhammad Hassaan Ashraf ,&nbsp;Hamed Alghamdi","doi":"10.1016/j.bmt.2024.09.004","DOIUrl":"10.1016/j.bmt.2024.09.004","url":null,"abstract":"<div><div>Diabetic Retinopathy (DR) is a leading cause of vision loss among diabetic patients, necessitating effective screening and grading for timely intervention. Regular screening significantly increases the workload of ophthalmologists, and accurate grading into stages—mild, moderate, severe, and proliferative—is crucial for monitoring disease progression. While Computer-Aided Diagnosis (CAD) systems can alleviate this burden, existing Convolutional Neural Network (CNN)-based frameworks use fixed-size kernels in a linear feed-forward manner. This approach can lead to information loss in the initial stages due to limited feature utilization across adjacent layers. To address this limitation, we propose a Hierarchical Features Fusion Convolutional Neural Network (HFF-Net) within a Diabetic Retinopathy Screening and Grading (DRSG) framework. The framework includes preprocessing to extract regions of interest from fundus images (FIs), enhancement using Contrast Limited Adaptive Histogram Equalization (CLAHE), and data augmentation for class balancing and overfitting mitigation. HFF-Net extracts multiscale features that fused at multiple levels within the network, utilizing the swish activation function for improved learning stability. We evaluated HFF-Net against several state-of-the-art CNN classifiers within the DRSG framework. Experimental results demonstrate that HFF-Net achieves a grading accuracy of 73.77 ​%, surpassing the second-best model by 3.51 percentage points (a relative improvement of approximately 5 ​%), and attains a screening accuracy of 98.70 ​% using only 1.18 million parameters. These findings highlight HFF-Net's potential as an efficient and effective tool in CAD systems for DR screening and grading.</div><div>©2017 Elsevier Inc. All rights reserved.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"8 ","pages":"Pages 50-64"},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomaterials that passively and actively target macrophages promote the regeneration of injured tissues 被动和主动靶向巨噬细胞的生物材料可促进受伤组织的再生
Pub Date : 2024-10-01 DOI: 10.1016/j.bmt.2024.09.005
Pengzhen Zhuang, Wu Yang, Yu Chen, Yu Zhang, Capucine Leboucher, Jessica M. Rosenholm, Hongbo Zhang
Modulation of the immune system has gained significant attention in regenerative medicine. Although most tissues possess intrinsic self-repair capabilities, large-sized defects and complex pathological conditions may still lead to tissue microenvironment imbalance and repair failure. Researchers have applied macrophage-mediated immunotherapeutic strategies to various injured tissue repairs by modulating inflammatory responses, intercellular communication, and multitissue synergies to restore immune microenvironmental homeostasis and promote tissue regeneration. Ongoing advancements in materials science have highlighted the precise immunomodulatory role of biomaterials, with passive targeting strategies based on the material's physicochemical properties and active targeting strategies based on specific molecular modifications becoming increasingly important in research. This review focuses on the mechanisms of action of actively and passively targeted biomaterials to modulate macrophages, which improve the tissue regenerative microenvironment through four basic strategies: (i) modulation of the inflammatory response to remove damaged cells, cellular debris, and pathogens; (ii) remodeling of the extracellular matrix; (iii) reconstruction of vascular tissues; and (iv) macrophage-stem cell crosstalk. This review covers the major mechanisms of macrophage action in the regeneration of injured tissues, while exploring the multiple methods by which advanced biomaterials target macrophages and highlighting their applications in the regeneration of a wide range of tissue injuries. We further discuss the future directions and current limitations in the development of biomaterials for macrophage modulation, aiming to advance biomaterials targeting macrophages, realize the full potential of immunotherapy, and achieve precision medicine.
免疫系统的调节在再生医学中备受关注。虽然大多数组织具有内在的自我修复能力,但大面积缺损和复杂的病理条件仍可能导致组织微环境失衡和修复失败。研究人员已将巨噬细胞介导的免疫治疗策略应用于各种损伤组织的修复,通过调节炎症反应、细胞间通讯和多组织协同作用来恢复免疫微环境的平衡,促进组织再生。材料科学的不断进步凸显了生物材料的精确免疫调节作用,基于材料理化特性的被动靶向策略和基于特定分子修饰的主动靶向策略在研究中变得越来越重要。本综述重点探讨主动和被动靶向生物材料调节巨噬细胞的作用机制,巨噬细胞通过四种基本策略改善组织再生微环境:(i) 调节炎症反应以清除受损细胞、细胞碎片和病原体;(ii) 重塑细胞外基质;(iii) 重建血管组织;(iv) 巨噬细胞-干细胞串联。这篇综述涵盖了巨噬细胞在损伤组织再生中的主要作用机制,同时探讨了先进生物材料靶向巨噬细胞的多种方法,并重点介绍了它们在各种组织损伤再生中的应用。我们还进一步讨论了巨噬细胞调控生物材料的未来发展方向和目前的局限性,旨在推进以巨噬细胞为靶标的生物材料的发展,充分发挥免疫疗法的潜力,实现精准医疗。
{"title":"Biomaterials that passively and actively target macrophages promote the regeneration of injured tissues","authors":"Pengzhen Zhuang,&nbsp;Wu Yang,&nbsp;Yu Chen,&nbsp;Yu Zhang,&nbsp;Capucine Leboucher,&nbsp;Jessica M. Rosenholm,&nbsp;Hongbo Zhang","doi":"10.1016/j.bmt.2024.09.005","DOIUrl":"10.1016/j.bmt.2024.09.005","url":null,"abstract":"<div><div>Modulation of the immune system has gained significant attention in regenerative medicine. Although most tissues possess intrinsic self-repair capabilities, large-sized defects and complex pathological conditions may still lead to tissue microenvironment imbalance and repair failure. Researchers have applied macrophage-mediated immunotherapeutic strategies to various injured tissue repairs by modulating inflammatory responses, intercellular communication, and multitissue synergies to restore immune microenvironmental homeostasis and promote tissue regeneration. Ongoing advancements in materials science have highlighted the precise immunomodulatory role of biomaterials, with passive targeting strategies based on the material's physicochemical properties and active targeting strategies based on specific molecular modifications becoming increasingly important in research. This review focuses on the mechanisms of action of actively and passively targeted biomaterials to modulate macrophages, which improve the tissue regenerative microenvironment through four basic strategies: (i) modulation of the inflammatory response to remove damaged cells, cellular debris, and pathogens; (ii) remodeling of the extracellular matrix; (iii) reconstruction of vascular tissues; and (iv) macrophage-stem cell crosstalk. This review covers the major mechanisms of macrophage action in the regeneration of injured tissues, while exploring the multiple methods by which advanced biomaterials target macrophages and highlighting their applications in the regeneration of a wide range of tissue injuries. We further discuss the future directions and current limitations in the development of biomaterials for macrophage modulation, aiming to advance biomaterials targeting macrophages, realize the full potential of immunotherapy, and achieve precision medicine.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"8 ","pages":"Pages 17-49"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomedical Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1