Gallium octacarboxyphthalocyanine hydroxide as a potential pro-apoptotic drug against cancer skin cells

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic Chemistry Pub Date : 2024-08-28 DOI:10.1016/j.bioorg.2024.107736
{"title":"Gallium octacarboxyphthalocyanine hydroxide as a potential pro-apoptotic drug against cancer skin cells","authors":"","doi":"10.1016/j.bioorg.2024.107736","DOIUrl":null,"url":null,"abstract":"<div><p>Novel anticancer strategies reduce side effects on healthy tissues by elevating the lethal abilities of cancer cells. The development of effective particles with good bioavailability and selectivity remains problematic. For undesirable features, green chemistry is used to synthesize the best compounds, or natural-based particles are improved. Photodynamic therapy (PDT), modelled on phthalocyanines (Pcs), still delivers second-generation sensitizers which are complemented with metal ions, such as Zn<sup>2+</sup>, Al<sup>3+</sup>, or Ga<sup>3+</sup>. Gallium octacarboxyphthalocyanine hydroxide (Ga(OH)PcOC), was designed for skin cancer treatment, and was used as a pro-apoptotic and pro-oxidative agent on normal skin cell lines, fibroblasts (NHDF), and keratinocytes (HaCaT), with promising selectivity against melanoma cancer cells (Me45) <em>in vitro</em>. Compared to the previous reported findings, where the ZnPcOC acted on the skin cell lines at higher doses, the sensitivities to the Ga(OH)PcOC allows for an effective reduction of the sensitizer dose. The effective dose, for a novel Ga(OH)PcOC particle, was significantly reduced from 30 µM to 6 µM on Me45 cancer cells, tested using 24 h MTT viability, as well as cytometric pro-oxidative and pro-apoptotic assays. The promising photosensitizer did not reduce viability in normal fibroblasts and keratinocytes without reactive oxygen species (ROS) elevation or apoptosis induction. The improvement to the previous findings is better Ga-based photosensitizer selectivity against the cancer Me45 cells, then observed in Zn-based compounds.</p></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045206824006412/pdfft?md5=fc519ce4c8a9337f0eb802d49abf26cd&pid=1-s2.0-S0045206824006412-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206824006412","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel anticancer strategies reduce side effects on healthy tissues by elevating the lethal abilities of cancer cells. The development of effective particles with good bioavailability and selectivity remains problematic. For undesirable features, green chemistry is used to synthesize the best compounds, or natural-based particles are improved. Photodynamic therapy (PDT), modelled on phthalocyanines (Pcs), still delivers second-generation sensitizers which are complemented with metal ions, such as Zn2+, Al3+, or Ga3+. Gallium octacarboxyphthalocyanine hydroxide (Ga(OH)PcOC), was designed for skin cancer treatment, and was used as a pro-apoptotic and pro-oxidative agent on normal skin cell lines, fibroblasts (NHDF), and keratinocytes (HaCaT), with promising selectivity against melanoma cancer cells (Me45) in vitro. Compared to the previous reported findings, where the ZnPcOC acted on the skin cell lines at higher doses, the sensitivities to the Ga(OH)PcOC allows for an effective reduction of the sensitizer dose. The effective dose, for a novel Ga(OH)PcOC particle, was significantly reduced from 30 µM to 6 µM on Me45 cancer cells, tested using 24 h MTT viability, as well as cytometric pro-oxidative and pro-apoptotic assays. The promising photosensitizer did not reduce viability in normal fibroblasts and keratinocytes without reactive oxygen species (ROS) elevation or apoptosis induction. The improvement to the previous findings is better Ga-based photosensitizer selectivity against the cancer Me45 cells, then observed in Zn-based compounds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢氧化八羧基酞菁镓作为一种潜在的促进皮肤癌细胞凋亡药物
新型抗癌策略通过提高癌细胞的致命能力来减少对健康组织的副作用。开发具有良好生物利用度和选择性的有效颗粒仍是一个难题。对于不理想的特性,可采用绿色化学方法合成最佳化合物,或改进天然颗粒。以酞菁(Pcs)为模型的光动力疗法(PDT)仍然提供第二代增敏剂,并辅以金属离子,如 Zn2+、Al3+ 或 Ga3+。氢氧化八羧基酞菁镓(Ga(OH)PcOC)是专为治疗皮肤癌而设计的,被用作促进正常皮肤细胞系、成纤维细胞(NHDF)和角质形成细胞(HaCaT)凋亡和氧化的药剂,在体外对黑色素瘤癌细胞(Me45)具有良好的选择性。与之前报道的ZnPcOC以较高剂量作用于皮肤细胞系的结果相比,对Ga(OH)PcOC的敏感性使得增敏剂剂量得以有效降低。使用 24 小时 MTT 活力以及细胞氧化和细胞凋亡检测法测试,新型 Ga(OH)PcOC 粒子对 Me45 癌细胞的有效剂量从 30 µM 显著降低到 6 µM。这种前景看好的光敏剂不会降低正常成纤维细胞和角质细胞的存活率,也不会导致活性氧(ROS)升高或诱导细胞凋亡。与之前的研究结果相比,镓基光敏剂对癌症 Me45 细胞的选择性更好,而锌基化合物的选择性则更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
期刊最新文献
Identification of novel RANKL inhibitors through in silico analysis Recent advances in the natural product analogues for the treatment of neurodegenerative diseases Impact of lipidation site on the activity of α-helical antimicrobial peptides Hyaluronan and Glucose Dual-targeting Probe: Synthesis and Application Discovery of N-Benzylpiperidinol derivatives as USP7 inhibitors against Hematology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1