{"title":"Improved localization and segmentation of spinal bone metastases in MRI with nnUNet radiomics","authors":"","doi":"10.1016/j.jbo.2024.100630","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Variability exists in the subjective delineation of tumor areas in MRI scans of patients with spinal bone metastases. This research aims to investigate the efficacy of the nnUNet radiomics model for automatic segmentation and identification of spinal bone metastases.</p></div><div><h3>Methods</h3><p>A cohort of 118 patients diagnosed with spinal bone metastases at our institution between January 2020 and December 2023 was enrolled. They were randomly divided into a training set (n = 78) and a test set (n = 40). The nnUNet radiomics segmentation model was developed, employing manual delineations of tumor areas by physicians as the reference standard. Both methods were utilized to compute tumor area measurements, and the segmentation performance and consistency of the nnUNet model were assessed.</p></div><div><h3>Results</h3><p>The nnUNet model demonstrated effective localization and segmentation of metastases, including smaller lesions. The Dice coefficients for the training and test sets were 0.926 and 0.824, respectively. Within the test set, the Dice coefficients for lumbar and thoracic vertebrae were 0.838 and 0.785, respectively. Strong linear correlation was observed between the nnUNet model segmentation and physician-delineated tumor areas in 40 patients (<em>R</em><sup>2</sup> = 0.998, <em>P</em> < 0.001).</p></div><div><h3>Conclusions</h3><p>The nnUNet model exhibits efficacy in automatically localizing and segmenting spinal bone metastases in MRI scans.</p></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212137424001106/pdfft?md5=1821d5886af7299365cde372beac3007&pid=1-s2.0-S2212137424001106-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001106","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Variability exists in the subjective delineation of tumor areas in MRI scans of patients with spinal bone metastases. This research aims to investigate the efficacy of the nnUNet radiomics model for automatic segmentation and identification of spinal bone metastases.
Methods
A cohort of 118 patients diagnosed with spinal bone metastases at our institution between January 2020 and December 2023 was enrolled. They were randomly divided into a training set (n = 78) and a test set (n = 40). The nnUNet radiomics segmentation model was developed, employing manual delineations of tumor areas by physicians as the reference standard. Both methods were utilized to compute tumor area measurements, and the segmentation performance and consistency of the nnUNet model were assessed.
Results
The nnUNet model demonstrated effective localization and segmentation of metastases, including smaller lesions. The Dice coefficients for the training and test sets were 0.926 and 0.824, respectively. Within the test set, the Dice coefficients for lumbar and thoracic vertebrae were 0.838 and 0.785, respectively. Strong linear correlation was observed between the nnUNet model segmentation and physician-delineated tumor areas in 40 patients (R2 = 0.998, P < 0.001).
Conclusions
The nnUNet model exhibits efficacy in automatically localizing and segmenting spinal bone metastases in MRI scans.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.