Unravelling the antioxidant behaviour of self-assembly β-Sheet in silk fibroin

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Biology Pub Date : 2024-08-20 DOI:10.1016/j.redox.2024.103307
{"title":"Unravelling the antioxidant behaviour of self-assembly β-Sheet in silk fibroin","authors":"","doi":"10.1016/j.redox.2024.103307","DOIUrl":null,"url":null,"abstract":"<div><p>Local oxidative stress in diseases or injury severely hinders cell homeostasis and organ regeneration. Antioxidant therapy is an effective strategy for oxidative stress treatment. Biomaterials with good biocompatibility and reactive oxygen species (ROS) scavenging ability are good choices for antioxidant therapeutics. However, there are few natural biomaterials that are identified with both biocompatibility and strong antioxidant activity. Here, we show, for the first time, that silk fibroin (SF) is a strong antioxidant, which can eliminate ROS in both cells and zebrafish. We further demonstrate that the β-sheet structures turn into a random coiled structure when SF is treated with hydrogen peroxide. The content of β-sheet structures can be increased by heating, thus enhancing the antioxidation properties of SF. Therefore, SF can serve as a good antioxidant biomaterial for therapeutics, and its β-sheet structure-based antioxidation mechanism provides a novel theoretical basis, which could be a new cue for more antioxidant biomaterial discovery and identification.</p></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213231724002854/pdfft?md5=07a7d54e3e94e99b6d062f19efac6494&pid=1-s2.0-S2213231724002854-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724002854","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Local oxidative stress in diseases or injury severely hinders cell homeostasis and organ regeneration. Antioxidant therapy is an effective strategy for oxidative stress treatment. Biomaterials with good biocompatibility and reactive oxygen species (ROS) scavenging ability are good choices for antioxidant therapeutics. However, there are few natural biomaterials that are identified with both biocompatibility and strong antioxidant activity. Here, we show, for the first time, that silk fibroin (SF) is a strong antioxidant, which can eliminate ROS in both cells and zebrafish. We further demonstrate that the β-sheet structures turn into a random coiled structure when SF is treated with hydrogen peroxide. The content of β-sheet structures can be increased by heating, thus enhancing the antioxidation properties of SF. Therefore, SF can serve as a good antioxidant biomaterial for therapeutics, and its β-sheet structure-based antioxidation mechanism provides a novel theoretical basis, which could be a new cue for more antioxidant biomaterial discovery and identification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示蚕丝纤维蛋白中自组装β-片的抗氧化特性
疾病或损伤造成的局部氧化应激严重阻碍了细胞的平衡和器官的再生。抗氧化疗法是治疗氧化应激的有效策略。具有良好生物相容性和活性氧清除能力的生物材料是抗氧化疗法的良好选择。然而,目前发现的兼具生物相容性和强抗氧化活性的天然生物材料并不多。在这里,我们首次发现蚕丝纤维素(SF)是一种强抗氧化剂,能消除细胞和斑马鱼体内的 ROS。我们还进一步证明,当过氧化氢处理蚕丝纤维素时,β-片状结构会变成随机盘绕结构。通过加热可以增加β片状结构的含量,从而增强 SF 的抗氧化性。因此,SF可作为一种良好的抗氧化生物材料用于治疗,其基于β片结构的抗氧化机理提供了新的理论基础,可为更多抗氧化生物材料的发现和鉴定提供新的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
期刊最新文献
Glucoraphanin and sulforaphane mitigate TNFα-induced Caco-2 monolayers permeabilization and inflammation PPARγ drives mitochondrial stress signaling and the loss of atrial cardiomyocytes in newborn mice exposed to hyperoxia Targeting GPX4-mediated ferroptosis protection sensitizes BRCA1-deficient cancer cells to PARP inhibitors Phytic acid-loaded polyvinyl alcohol hydrogel promotes wound healing of injured corneal epithelium through inhibiting ferroptosis UBR5 mediates colorectal cancer chemoresistance by attenuating ferroptosis via Lys 11 ubiquitin-dependent stabilization of Smad3-SLC7A11 signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1