Single-pulse ultrafast real-time simultaneous planar imaging of femtosecond laser-nanoparticle dynamics in flames

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-08-29 DOI:10.1038/s41377-024-01588-x
Yogeshwar Nath Mishra, Peng Wang, Florian J. Bauer, Murthy S. Gudipati, Lihong V. Wang
{"title":"Single-pulse ultrafast real-time simultaneous planar imaging of femtosecond laser-nanoparticle dynamics in flames","authors":"Yogeshwar Nath Mishra, Peng Wang, Florian J. Bauer, Murthy S. Gudipati, Lihong V. Wang","doi":"10.1038/s41377-024-01588-x","DOIUrl":null,"url":null,"abstract":"<p>The creation of carbonaceous nanoparticles and their dynamics in hydrocarbon flames are still debated in environmental, combustion, and material sciences. In this study, we introduce single-pulse femtosecond laser sheet-compressed ultrafast photography (fsLS-CUP), an ultrafast imaging technique specifically designed to shed light on and capture ultrafast dynamics stemming from interactions between femtosecond lasers and nanoparticles in flames in a single-shot. fsLS-CUP enables the first-time real-time billion frames-per-second (Gfps) simultaneous two-dimensional (2D) imaging of laser-induced fluorescence (LIF) and laser-induced heating (LIH) that are originated from polycyclic aromatic hydrocarbons (PAHs) and soot particles, respectively. Furthermore, fsLS-CUP provides the real-time spatiotemporal map of femtosecond laser-soot interaction as elastic light scattering (ELS) at an astonishing 250 Gfps. In contrast to existing single-shot ultrafast imaging approaches, which are limited to millions of frames per second only and require multiple laser pulses, our method employs only a single pulse and captures the entire dynamics of laser-induced signals at hundreds of Gfps. Using a single pulse does not change the optical properties of nanoparticles for a following pulse, thus allowing reliable spatiotemporal mapping. Moreover, we found that particle inception and growth are derived from precursors. In essence, as an imaging modality, fsLS-CUP offers ultrafast 2D diagnostics, contributing to the fundamental understanding of nanoparticle’s inception and broader applications across different fields, such as material science and biomedical engineering.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01588-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The creation of carbonaceous nanoparticles and their dynamics in hydrocarbon flames are still debated in environmental, combustion, and material sciences. In this study, we introduce single-pulse femtosecond laser sheet-compressed ultrafast photography (fsLS-CUP), an ultrafast imaging technique specifically designed to shed light on and capture ultrafast dynamics stemming from interactions between femtosecond lasers and nanoparticles in flames in a single-shot. fsLS-CUP enables the first-time real-time billion frames-per-second (Gfps) simultaneous two-dimensional (2D) imaging of laser-induced fluorescence (LIF) and laser-induced heating (LIH) that are originated from polycyclic aromatic hydrocarbons (PAHs) and soot particles, respectively. Furthermore, fsLS-CUP provides the real-time spatiotemporal map of femtosecond laser-soot interaction as elastic light scattering (ELS) at an astonishing 250 Gfps. In contrast to existing single-shot ultrafast imaging approaches, which are limited to millions of frames per second only and require multiple laser pulses, our method employs only a single pulse and captures the entire dynamics of laser-induced signals at hundreds of Gfps. Using a single pulse does not change the optical properties of nanoparticles for a following pulse, thus allowing reliable spatiotemporal mapping. Moreover, we found that particle inception and growth are derived from precursors. In essence, as an imaging modality, fsLS-CUP offers ultrafast 2D diagnostics, contributing to the fundamental understanding of nanoparticle’s inception and broader applications across different fields, such as material science and biomedical engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
火焰中飞秒激光-纳米粒子动态的单脉冲超快实时同步平面成像
碳质纳米粒子的产生及其在碳氢化合物火焰中的动力学在环境、燃烧和材料科学领域仍存在争议。在这项研究中,我们介绍了单脉冲飞秒激光薄片压缩超快摄影(fsLS-CUP),这是一种超快成像技术,专门用于揭示和捕捉火焰中飞秒激光与纳米粒子之间相互作用产生的超快动态。fsLS-CUP 首次实现了每秒十亿帧(Gfps)的激光诱导荧光(LIF)和激光诱导加热(LIH)同步二维(2D)成像,这些荧光和加热分别来自多环芳烃(PAHs)和烟尘颗粒。此外,fsLS-CUP 还能以惊人的 250 Gfps 速度提供飞秒激光与烟尘相互作用的实时时空图,即弹性光散射(ELS)。现有的单发超快成像方法每秒只能拍摄数百万帧,而且需要多个激光脉冲,而我们的方法只需一个脉冲,就能以数百 Gfps 的速度捕捉到激光诱导信号的整个动态过程。使用单脉冲不会改变纳米粒子在后续脉冲中的光学特性,因此可以进行可靠的时空绘图。此外,我们还发现,粒子的萌发和生长源于前体。从本质上讲,fsLS-CUP 作为一种成像方式,可提供超快二维诊断,有助于从根本上理解纳米粒子的萌发,并在材料科学和生物医学工程等不同领域得到更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Parity-Time symmetry helps breaking a new limit Neural stimulation and modulation with sub-cellular precision by optomechanical bio-dart Phase-change VO2-based thermochromic smart windows Optical fibre based artificial compound eyes for direct static imaging and ultrafast motion detection Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1