Origin of Efficient and Tunable Dual‐Band Emission From Zinc Chalcogenide Quantum Dots for Sustainable Photonics

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-08-28 DOI:10.1002/lpor.202400610
Hanchen Shen, Xiaojia Yuan, Yinjuan Ren, Zhigao Huang, Hai Zhu, Shengli Zhang, Yue Wang
{"title":"Origin of Efficient and Tunable Dual‐Band Emission From Zinc Chalcogenide Quantum Dots for Sustainable Photonics","authors":"Hanchen Shen, Xiaojia Yuan, Yinjuan Ren, Zhigao Huang, Hai Zhu, Shengli Zhang, Yue Wang","doi":"10.1002/lpor.202400610","DOIUrl":null,"url":null,"abstract":"Impurity‐induced optical modulation in quantum‐confined colloidal nanocrystals has attracted intense interest thanks to the unique fundamental photo‐physics and application prospects. However, the present doping strategy is still facing limitations including spectral tunability and impurity controllability. Herein, a new route toward the tunable and efficient dual‐band emission in chlorine‐doped ZnSe (ZnSe:Cl) eco‐friendly quantum dots (QDs) is provided. Corroborated by the comprehensive spectroscopic characterization and first‐principles calculations, the emerging broadband sub‐gap emission is disclosed to originate from the self‐activating center constituted by a fusion of a Cl‐substituted Se point defect and a nearby Zn vacancy (Cl<jats:sub>Se</jats:sub>‐V<jats:sub>Zn</jats:sub> pair). First‐principles calculations confirm that the optically active center state stems from the distorted electron states of Se atoms surrounding the impurity rather than the Cl electron orbitals, which results in robust sub‐gap emission at ambient conditions. A dynamic model involving the transition between the charge and neutral states of the self‐activated center is established. By virtue of the controllable dual‐emission states, the transparent information encryption and the single‐component white light‐emitting diodes are realized, demonstrating the promising potential in sustainable photonic applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400610","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Impurity‐induced optical modulation in quantum‐confined colloidal nanocrystals has attracted intense interest thanks to the unique fundamental photo‐physics and application prospects. However, the present doping strategy is still facing limitations including spectral tunability and impurity controllability. Herein, a new route toward the tunable and efficient dual‐band emission in chlorine‐doped ZnSe (ZnSe:Cl) eco‐friendly quantum dots (QDs) is provided. Corroborated by the comprehensive spectroscopic characterization and first‐principles calculations, the emerging broadband sub‐gap emission is disclosed to originate from the self‐activating center constituted by a fusion of a Cl‐substituted Se point defect and a nearby Zn vacancy (ClSe‐VZn pair). First‐principles calculations confirm that the optically active center state stems from the distorted electron states of Se atoms surrounding the impurity rather than the Cl electron orbitals, which results in robust sub‐gap emission at ambient conditions. A dynamic model involving the transition between the charge and neutral states of the self‐activated center is established. By virtue of the controllable dual‐emission states, the transparent information encryption and the single‐component white light‐emitting diodes are realized, demonstrating the promising potential in sustainable photonic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可持续光子学的卤化锌量子点高效可调双波段发射的起源
量子约束胶体纳米晶体中的杂质诱导光调制因其独特的基础光物理学和应用前景而备受关注。然而,目前的掺杂策略仍然面临着光谱可调谐性和杂质可控性等限制。本文提供了一条在掺氯 ZnSe(ZnSe:Cl)环保型量子点(QDs)中实现可调谐和高效双波段发射的新途径。综合光谱表征和第一性原理计算证实,新出现的宽带亚间隙发射源于由 Cl 取代的 Se 点缺陷和附近的 Zn 空位(ClSe-VZn 对)融合构成的自激活中心。第一性原理计算证实,光学活性中心态源于杂质周围硒原子的扭曲电子态,而非 Cl 电子轨道,这就导致了在环境条件下强大的亚间隙发射。我们建立了一个涉及自激活中心的电荷态和中性态之间转变的动态模型。凭借可控的双发射态,实现了透明信息加密和单组分白光发光二极管,展示了可持续光子应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Detection of Nonlinearity in Photonic Lattices Steering Nonlinear Chiral Valley Photons Through Optical Orbit–Orbit Coupling Large-Area Floating Display with Wafer-Scale Manufactured Metalens Arrays Exciton Dissociation and Long-Lived Delayed Components in High-Efficiency Quasi-Two-Dimensional Green Perovskite Light-Emitting Diodes Photoactivated Multicolor Organic Phosphorescence in Intrinsically Stretchable, Self-Healable and Recyclable Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1