Hanchen Shen, Xiaojia Yuan, Yinjuan Ren, Zhigao Huang, Hai Zhu, Shengli Zhang, Yue Wang
{"title":"Origin of Efficient and Tunable Dual‐Band Emission From Zinc Chalcogenide Quantum Dots for Sustainable Photonics","authors":"Hanchen Shen, Xiaojia Yuan, Yinjuan Ren, Zhigao Huang, Hai Zhu, Shengli Zhang, Yue Wang","doi":"10.1002/lpor.202400610","DOIUrl":null,"url":null,"abstract":"Impurity‐induced optical modulation in quantum‐confined colloidal nanocrystals has attracted intense interest thanks to the unique fundamental photo‐physics and application prospects. However, the present doping strategy is still facing limitations including spectral tunability and impurity controllability. Herein, a new route toward the tunable and efficient dual‐band emission in chlorine‐doped ZnSe (ZnSe:Cl) eco‐friendly quantum dots (QDs) is provided. Corroborated by the comprehensive spectroscopic characterization and first‐principles calculations, the emerging broadband sub‐gap emission is disclosed to originate from the self‐activating center constituted by a fusion of a Cl‐substituted Se point defect and a nearby Zn vacancy (Cl<jats:sub>Se</jats:sub>‐V<jats:sub>Zn</jats:sub> pair). First‐principles calculations confirm that the optically active center state stems from the distorted electron states of Se atoms surrounding the impurity rather than the Cl electron orbitals, which results in robust sub‐gap emission at ambient conditions. A dynamic model involving the transition between the charge and neutral states of the self‐activated center is established. By virtue of the controllable dual‐emission states, the transparent information encryption and the single‐component white light‐emitting diodes are realized, demonstrating the promising potential in sustainable photonic applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400610","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Impurity‐induced optical modulation in quantum‐confined colloidal nanocrystals has attracted intense interest thanks to the unique fundamental photo‐physics and application prospects. However, the present doping strategy is still facing limitations including spectral tunability and impurity controllability. Herein, a new route toward the tunable and efficient dual‐band emission in chlorine‐doped ZnSe (ZnSe:Cl) eco‐friendly quantum dots (QDs) is provided. Corroborated by the comprehensive spectroscopic characterization and first‐principles calculations, the emerging broadband sub‐gap emission is disclosed to originate from the self‐activating center constituted by a fusion of a Cl‐substituted Se point defect and a nearby Zn vacancy (ClSe‐VZn pair). First‐principles calculations confirm that the optically active center state stems from the distorted electron states of Se atoms surrounding the impurity rather than the Cl electron orbitals, which results in robust sub‐gap emission at ambient conditions. A dynamic model involving the transition between the charge and neutral states of the self‐activated center is established. By virtue of the controllable dual‐emission states, the transparent information encryption and the single‐component white light‐emitting diodes are realized, demonstrating the promising potential in sustainable photonic applications.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.