A metadynamics study of water oxidation reactions at (001)-WO3/liquid-water interface

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-08-29 DOI:10.1016/j.checat.2024.101085
Rangsiman Ketkaew, Fabrizio Creazzo, Kevin Sivula, Sandra Luber
{"title":"A metadynamics study of water oxidation reactions at (001)-WO3/liquid-water interface","authors":"Rangsiman Ketkaew, Fabrizio Creazzo, Kevin Sivula, Sandra Luber","doi":"10.1016/j.checat.2024.101085","DOIUrl":null,"url":null,"abstract":"<p>A metadynamics method was used to calculate the free energy surfaces (FESs) of the oxygen evolution reaction (OER). Metadynamics simulation suggests that the oxygen–oxygen (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.351ex;\" viewbox=\"0 -796.9 2779.9 947.9\" width=\"6.457ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(1000,0)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(2001,0)\"><use xlink:href=\"#MJMAIN-4F\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mo is=\"true\">−</mo><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mo is=\"true\">−</mo><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow></math></script></span>) bond formation induced by oxidative reactant species and oxygen atoms on the surface is the rate-determining step. Not only bond distances but also extended social permutation invariant (xSPRINT) coordinates and deep autoencoder neural network (DAENN) are used as collective variables (CVs) in metadynamics calculations to characterize the FESs of the studied reactions. The FES calculations using xSPRINT and DAENN CVs show that the formation of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msup is=\"true\"&gt;&lt;mtext is=\"true\"&gt;OH&lt;/mtext&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 1982.9 947.9\" width=\"4.605ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1529,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msup is=\"true\"><mtext is=\"true\">OH</mtext><mo is=\"true\">•</mo></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msup is=\"true\"><mtext is=\"true\">OH</mtext><mo is=\"true\">•</mo></msup></mrow></math></script></span> and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;H&lt;/mi&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;msub is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2436.8 1047.3\" width=\"5.66ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-48\"></use></g><g is=\"true\" transform=\"translate(750,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g><g is=\"true\" transform=\"translate(1204,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">H</mi><mn is=\"true\">2</mn></msub><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">2</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">H</mi><mn is=\"true\">2</mn></msub><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mn is=\"true\">2</mn></msub></mrow></math></script></span>, respectively, is more energetically (in terms of the free-energy barrier) favorable than the formation of oxygen gas at the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mtext is=\"true\"&gt;WO&lt;/mtext&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2260.9 1047.3\" width=\"5.251ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-57\"></use><use x=\"1028\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1807,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mtext is=\"true\">WO</mtext><mn is=\"true\">3</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mtext is=\"true\">WO</mtext><mn is=\"true\">3</mn></msub></mrow></math></script></span> surface/liquid-water interface. It is found that the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.351ex;\" viewbox=\"0 -796.9 2779.9 947.9\" width=\"6.457ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(1000,0)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(2001,0)\"><use xlink:href=\"#MJMAIN-4F\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mo is=\"true\">−</mo><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mo is=\"true\">−</mo><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow></math></script></span> bond formation is sluggish because of the stable electronic state of the surface and that the formation of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msup is=\"true\"&gt;&lt;mtext is=\"true\"&gt;OH&lt;/mtext&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 1982.9 947.9\" width=\"4.605ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1529,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msup is=\"true\"><mtext is=\"true\">OH</mtext><mo is=\"true\">•</mo></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msup is=\"true\"><mtext is=\"true\">OH</mtext><mo is=\"true\">•</mo></msup></mrow></math></script></span> and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;H&lt;/mi&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;msub is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2436.8 1047.3\" width=\"5.66ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-48\"></use></g><g is=\"true\" transform=\"translate(750,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g><g is=\"true\" transform=\"translate(1204,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">H</mi><mn is=\"true\">2</mn></msub><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">2</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">H</mi><mn is=\"true\">2</mn></msub><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mn is=\"true\">2</mn></msub></mrow></math></script></span> occurs through an energy barrierless process.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"30 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A metadynamics method was used to calculate the free energy surfaces (FESs) of the oxygen evolution reaction (OER). Metadynamics simulation suggests that the oxygen–oxygen (OO) bond formation induced by oxidative reactant species and oxygen atoms on the surface is the rate-determining step. Not only bond distances but also extended social permutation invariant (xSPRINT) coordinates and deep autoencoder neural network (DAENN) are used as collective variables (CVs) in metadynamics calculations to characterize the FESs of the studied reactions. The FES calculations using xSPRINT and DAENN CVs show that the formation of OH and H2O2, respectively, is more energetically (in terms of the free-energy barrier) favorable than the formation of oxygen gas at the WO3 surface/liquid-water interface. It is found that the OO bond formation is sluggish because of the stable electronic state of the surface and that the formation of OH and H2O2 occurs through an energy barrierless process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(001)-WO3/ 水-液界面水氧化反应的元动力学研究
采用元动力学方法计算了氧进化反应(OER)的自由能面(FES)。元动力学模拟表明,氧化反应物和表面氧原子诱发的氧-氧(O-OO-O)键形成是决定速率的步骤。在元动力学计算中,不仅使用了键距,还使用了扩展社会包覆不变性(xSPRINT)坐标和深度自动编码神经网络(DAENN)作为集合变量(CV),以描述所研究反应的 FES 特性。使用 xSPRINT 和 DAENN CVs 进行的 FES 计算表明,在 WO3WO3 表面/液-水界面上,OH-OH- 和 H2O2H2O2 的形成在能量(自由能垒)上分别比氧气的形成更有利。研究发现,由于表面的电子状态稳定,O-OO-O 键的形成比较缓慢,而 OH-OH- 和 H2O2H2O2 的形成是通过无能障过程进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Reverse effect of metal-support interaction on platinum and iridium catalysts in ammonia selective oxidation Visualizing active species in CO2 electroreduction Key role of precatalyst composition and iron impurities in oxygen evolution reaction Enzymatic azide synthesis by ATP-dependent synthetase Visualizing the step bunching on Pt surfaces and its effect in electrocatalysis with EC-STM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1