{"title":"Zinc-anode reversibility and capacity inflection as an evaluation criterion","authors":"","doi":"10.1016/j.joule.2024.07.023","DOIUrl":null,"url":null,"abstract":"<div><p>Zhuoxi Wu is currently a PhD student at the Department of Materials Science and Engineering in City University of Hong Kong, under the supervision of Professor Chunyi Zhi. His current research mainly focuses on zinc-anode reversibility improvement and electrolyte modification of zinc-ion battery.</p><p>Yu Wang is a postdoc in the Department of Materials Science and Engineering at City University of Hong Kong in Professor Chunyi Zhi’s group. Her current research mainly focuses on advanced aqueous zinc-ion batteries and the design of advanced metallic anodes. Dr. Wang obtained her bachelor’s and master’s degree in chemistry from Harbin Institute of Technology in 2012 and 2014. She obtained her PhD from the Chinese University of Hong Kong and mainly focuses on Li-air and aqueous Li-ion batteries.</p><p>Chunyi Zhi obtained a PhD in condensed matter physics from the Institute of Physics, Chinese Academy of Sciences. After 2 years of being a postdoc at the National Institute for Materials Science (NIMS) in Japan, he was promoted to ICYS researcher, researcher (faculty), and senior researcher (permanent position) in NIMS. Dr. Zhi is now a chair professor at Department of Materials Science and Engineering in City University of Hong Kong. Dr. Zhi has extensive experience in aqueous electrolyte batteries and zinc ion batteries.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003520","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zhuoxi Wu is currently a PhD student at the Department of Materials Science and Engineering in City University of Hong Kong, under the supervision of Professor Chunyi Zhi. His current research mainly focuses on zinc-anode reversibility improvement and electrolyte modification of zinc-ion battery.
Yu Wang is a postdoc in the Department of Materials Science and Engineering at City University of Hong Kong in Professor Chunyi Zhi’s group. Her current research mainly focuses on advanced aqueous zinc-ion batteries and the design of advanced metallic anodes. Dr. Wang obtained her bachelor’s and master’s degree in chemistry from Harbin Institute of Technology in 2012 and 2014. She obtained her PhD from the Chinese University of Hong Kong and mainly focuses on Li-air and aqueous Li-ion batteries.
Chunyi Zhi obtained a PhD in condensed matter physics from the Institute of Physics, Chinese Academy of Sciences. After 2 years of being a postdoc at the National Institute for Materials Science (NIMS) in Japan, he was promoted to ICYS researcher, researcher (faculty), and senior researcher (permanent position) in NIMS. Dr. Zhi is now a chair professor at Department of Materials Science and Engineering in City University of Hong Kong. Dr. Zhi has extensive experience in aqueous electrolyte batteries and zinc ion batteries.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.