Woosuk Kang;EunJin Jeong;Kyonghwan Yoon;Soonhoi Ha
{"title":"Software Synthesis From High-Level Specification for Swarm Robotic Applications","authors":"Woosuk Kang;EunJin Jeong;Kyonghwan Yoon;Soonhoi Ha","doi":"10.1109/LES.2023.3339159","DOIUrl":null,"url":null,"abstract":"Programming for swarm robots is challenging due to platform diversity and the gap between individual and swarm behaviors. To tackle this challenge, we propose a component-based software synthesis method from a high-level specification. To support heterogeneous robots and maximize code reuse, we adopt a component-based approach that classifies software components into three categories: 1) robot; 2) algorithm; and 3) consensus. We generate a task graph model for an individual robot from a high-level specification and use a software synthesizer to generate the target code from the task graph model. Through a proof-of-concept implementation with a group searching application, the viability of the proposed technique is demonstrated.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 3","pages":"243-246"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10342768/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Programming for swarm robots is challenging due to platform diversity and the gap between individual and swarm behaviors. To tackle this challenge, we propose a component-based software synthesis method from a high-level specification. To support heterogeneous robots and maximize code reuse, we adopt a component-based approach that classifies software components into three categories: 1) robot; 2) algorithm; and 3) consensus. We generate a task graph model for an individual robot from a high-level specification and use a software synthesizer to generate the target code from the task graph model. Through a proof-of-concept implementation with a group searching application, the viability of the proposed technique is demonstrated.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.