{"title":"SSRAID: A Stripe-Queued and Stripe-Threaded Merging I/O Strategy to Improve Write Performance of Serial Interface SSD RAID","authors":"Peixuan Li;Ping Xie;Qiang Cao","doi":"10.1109/TPDS.2024.3443083","DOIUrl":null,"url":null,"abstract":"RAID (Redundant Array of Independent Disks) has been widely used to enhance read and write performance of existing storage systems. Existing software RAID do not fully utilize write performance of Serial interface SSDs (Solid State Drive). The most popular software RAID currently is Linux Multiple-Disks (MD), and the latest software RAID is StRAID. We observe that both of these software RAID methods lead to thread contention in multi-threaded mode, especially when applied to Serial interface SSDs. Multiple threads writing to same address can limit write performance. In this paper, we propose a stripe-queued and stripe-threaded merging I/O strategy. First, SSRAID segregates write requests across different stripes using a set of stripe-queues and stripe-threads to prevent interference between them. As a result, write thread contention in SSRAID is eliminated, allowing stripe-threads to maintain the highest efficiency of parallelism. Secondly, SSRAID can merge write requests from the same stripe-queue multiple times through stripe-thread, effectively reducing the number of additional write I/Os. Finally, SSRAID presents a stage buffer based on data merging. During partial stripe-write, write-induced read I/Os on the SSD are transformed into direct access to the stage buffer, effectively reducing write-induced read I/Os. Compared to StRAID, SSRAID improves average sequential write throughput by 86% and reduces average sequential write latency by 61% in the optimal case.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 10","pages":"1841-1853"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636805/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
RAID (Redundant Array of Independent Disks) has been widely used to enhance read and write performance of existing storage systems. Existing software RAID do not fully utilize write performance of Serial interface SSDs (Solid State Drive). The most popular software RAID currently is Linux Multiple-Disks (MD), and the latest software RAID is StRAID. We observe that both of these software RAID methods lead to thread contention in multi-threaded mode, especially when applied to Serial interface SSDs. Multiple threads writing to same address can limit write performance. In this paper, we propose a stripe-queued and stripe-threaded merging I/O strategy. First, SSRAID segregates write requests across different stripes using a set of stripe-queues and stripe-threads to prevent interference between them. As a result, write thread contention in SSRAID is eliminated, allowing stripe-threads to maintain the highest efficiency of parallelism. Secondly, SSRAID can merge write requests from the same stripe-queue multiple times through stripe-thread, effectively reducing the number of additional write I/Os. Finally, SSRAID presents a stage buffer based on data merging. During partial stripe-write, write-induced read I/Os on the SSD are transformed into direct access to the stage buffer, effectively reducing write-induced read I/Os. Compared to StRAID, SSRAID improves average sequential write throughput by 86% and reduces average sequential write latency by 61% in the optimal case.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.