An AI-Enhanced Multipath TCP Scheduler for Open Radio Access Networks

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS IEEE Transactions on Green Communications and Networking Pub Date : 2024-07-05 DOI:10.1109/TGCN.2024.3424202
Wenxuan Qiao;Yuyang Zhang;Ping Dong;Xiaojiang Du;Hongke Zhang;Mohsen Guizani
{"title":"An AI-Enhanced Multipath TCP Scheduler for Open Radio Access Networks","authors":"Wenxuan Qiao;Yuyang Zhang;Ping Dong;Xiaojiang Du;Hongke Zhang;Mohsen Guizani","doi":"10.1109/TGCN.2024.3424202","DOIUrl":null,"url":null,"abstract":"Multipath transmission technology has recently emerged as a crucial solution to address bandwidth resource constraints and uneven load distribution across access points caused by the surge in data-intensive applications. A well-designed multipath scheduler can improve the quality of service and balance the power consumption in evolving Open Radio Access Networks (O-RANs). However, wireless channel instability and RAN heterogeneity challenge the scheduler’s bandwidth aggregation capability. This paper introduces a Neural Aggregation Bandwidth Optimization (NABO) scheduler for O-RAN, combining bandwidth prediction with scheduling policy optimization. NABO employs an innovative approach by first constructing a Transformer-optimized Throughput (ToT) prediction model based on historical path characteristics. To train the model, we design a system to simulate various network conditions and collect datasets. This model is then integrated into a dual-network collaborative learning framework that combines ToT predictions with heterogeneity levels to guide the scheduler’s optimization process. The ToT model achieves a throughput prediction error of less than 2%. In numerous heterogeneous simulation scenarios and real-world wireless environments, NABO significantly outperforms state-of-the-art multipath transmission methods, with bandwidth aggregation improvements of approximately 51% and 30% over existing benchmarks, respectively. These findings demonstrate NABO’s superior efficacy and potential in enhancing the performance and energy efficiency of O-RANs.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"910-923"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10587019/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Multipath transmission technology has recently emerged as a crucial solution to address bandwidth resource constraints and uneven load distribution across access points caused by the surge in data-intensive applications. A well-designed multipath scheduler can improve the quality of service and balance the power consumption in evolving Open Radio Access Networks (O-RANs). However, wireless channel instability and RAN heterogeneity challenge the scheduler’s bandwidth aggregation capability. This paper introduces a Neural Aggregation Bandwidth Optimization (NABO) scheduler for O-RAN, combining bandwidth prediction with scheduling policy optimization. NABO employs an innovative approach by first constructing a Transformer-optimized Throughput (ToT) prediction model based on historical path characteristics. To train the model, we design a system to simulate various network conditions and collect datasets. This model is then integrated into a dual-network collaborative learning framework that combines ToT predictions with heterogeneity levels to guide the scheduler’s optimization process. The ToT model achieves a throughput prediction error of less than 2%. In numerous heterogeneous simulation scenarios and real-world wireless environments, NABO significantly outperforms state-of-the-art multipath transmission methods, with bandwidth aggregation improvements of approximately 51% and 30% over existing benchmarks, respectively. These findings demonstrate NABO’s superior efficacy and potential in enhancing the performance and energy efficiency of O-RANs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向开放式无线接入网络的人工智能增强型多路径 TCP 调度器
近来,多路径传输技术已成为解决带宽资源紧张和数据密集型应用激增造成的接入点负载分布不均问题的重要解决方案。精心设计的多路径调度器可以在不断发展的开放式无线接入网(O-RAN)中提高服务质量并平衡功耗。然而,无线信道的不稳定性和 RAN 的异构性对调度器的带宽聚合能力提出了挑战。本文介绍了用于 O-RAN 的神经聚合带宽优化(NABO)调度器,它将带宽预测与调度策略优化相结合。NABO 采用了一种创新方法,首先根据历史路径特征构建一个变压器优化吞吐量(ToT)预测模型。为了训练该模型,我们设计了一个系统来模拟各种网络条件并收集数据集。然后将该模型集成到双网络协同学习框架中,该框架将 ToT 预测与异构水平相结合,以指导调度器的优化过程。ToT 模型的吞吐量预测误差小于 2%。在众多异构模拟场景和真实无线环境中,NABO 的性能明显优于最先进的多径传输方法,带宽聚合分别比现有基准提高了约 51% 和 30%。这些发现证明了NABO在提高O-RAN性能和能效方面的卓越功效和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
期刊最新文献
2024 Index IEEE Transactions on Green Communications and Networking Vol. 8 Table of Contents Guest Editorial Special Issue on Rate-Splitting Multiple Access for Future Green Communication Networks IEEE Transactions on Green Communications and Networking IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1