Romina Soledad Molina;Iván René Morales;Maria Liz Crespo;Veronica Gil Costa;Sergio Carrato;Giovanni Ramponi
{"title":"An End-to-End Workflow to Efficiently Compress and Deploy DNN Classifiers on SoC/FPGA","authors":"Romina Soledad Molina;Iván René Morales;Maria Liz Crespo;Veronica Gil Costa;Sergio Carrato;Giovanni Ramponi","doi":"10.1109/LES.2023.3343030","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) models have demonstrated discriminative and representative learning capabilities over a wide range of applications, even at the cost of high-computational complexity. Due to their parallel processing capabilities, reconfigurability, and low-power consumption, systems on chip based on a field programmable gate array (SoC/FPGA) have been used to face this challenge. Nevertheless, SoC/FPGA devices are resource-constrained, which implies the need for optimal use of technology for the computation and storage operations involved in ML-based inference. Consequently, mapping a deep neural network (DNN) architecture to a SoC/FPGA requires compression strategies to obtain a hardware design with a good compromise between effectiveness, memory footprint, and inference time. This letter presents an efficient end-to-end workflow for deploying DNNs on an SoC/FPGA by integrating hyperparameter tuning through Bayesian optimization (BO) with an ensemble of compression techniques.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 3","pages":"255-258"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10360204/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) models have demonstrated discriminative and representative learning capabilities over a wide range of applications, even at the cost of high-computational complexity. Due to their parallel processing capabilities, reconfigurability, and low-power consumption, systems on chip based on a field programmable gate array (SoC/FPGA) have been used to face this challenge. Nevertheless, SoC/FPGA devices are resource-constrained, which implies the need for optimal use of technology for the computation and storage operations involved in ML-based inference. Consequently, mapping a deep neural network (DNN) architecture to a SoC/FPGA requires compression strategies to obtain a hardware design with a good compromise between effectiveness, memory footprint, and inference time. This letter presents an efficient end-to-end workflow for deploying DNNs on an SoC/FPGA by integrating hyperparameter tuning through Bayesian optimization (BO) with an ensemble of compression techniques.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.