Automated Lumen Segmentation in Carotid Artery Ultrasound Images Based on Adaptive Generated Shape Prior.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-08-09 DOI:10.3390/bioengineering11080812
Yu Li, Liwen Zou, Jiajia Song, Kailin Gong
{"title":"Automated Lumen Segmentation in Carotid Artery Ultrasound Images Based on Adaptive Generated Shape Prior.","authors":"Yu Li, Liwen Zou, Jiajia Song, Kailin Gong","doi":"10.3390/bioengineering11080812","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound imaging is vital for diagnosing carotid artery vascular lesions, highlighting the importance of accurately segmenting lumens in ultrasound images to prevent, diagnose and treat vascular diseases. However, noise artifacts, blood residue and discontinuous lumens significantly affect segmentation accuracy. To achieve accurate lumen segmentation in low-quality images, we propose a novel segmentation algorithm which is guided by an adaptively generated shape prior. To tackle the above challenges, we introduce a shape-prior-based segmentation method for carotid artery lumen walls. The shape prior in this study is adaptively generated based on the evolutionary trend of vessel growth. Shape priors guide and constrain the active contour, resulting in precise segmentation. The efficacy of the proposed model was confirmed using 247 carotid artery ultrasound images, with experimental results showing an average Dice coefficient of 92.38%, demonstrating superior segmentation performance compared to existing mathematical models. Our method can quickly and effectively perform accurate lumen segmentation on low-quality carotid artery ultrasound images, which is of great significance for the diagnosis of cardiovascular and cerebrovascular diseases.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080812","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound imaging is vital for diagnosing carotid artery vascular lesions, highlighting the importance of accurately segmenting lumens in ultrasound images to prevent, diagnose and treat vascular diseases. However, noise artifacts, blood residue and discontinuous lumens significantly affect segmentation accuracy. To achieve accurate lumen segmentation in low-quality images, we propose a novel segmentation algorithm which is guided by an adaptively generated shape prior. To tackle the above challenges, we introduce a shape-prior-based segmentation method for carotid artery lumen walls. The shape prior in this study is adaptively generated based on the evolutionary trend of vessel growth. Shape priors guide and constrain the active contour, resulting in precise segmentation. The efficacy of the proposed model was confirmed using 247 carotid artery ultrasound images, with experimental results showing an average Dice coefficient of 92.38%, demonstrating superior segmentation performance compared to existing mathematical models. Our method can quickly and effectively perform accurate lumen segmentation on low-quality carotid artery ultrasound images, which is of great significance for the diagnosis of cardiovascular and cerebrovascular diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应生成形状先验的颈动脉超声图像中的自动管腔分割。
超声波成像对诊断颈动脉血管病变至关重要,因此准确分割超声波图像中的管腔对预防、诊断和治疗血管疾病非常重要。然而,噪声伪影、血液残留和不连续的管腔会严重影响分割的准确性。为了在低质量图像中实现准确的管腔分割,我们提出了一种新型分割算法,该算法以自适应生成的形状先验为指导。为应对上述挑战,我们介绍了一种基于形状先验的颈动脉管壁分割方法。本研究中的形状先验是根据血管生长的演变趋势自适应生成的。形状先验引导并约束主动轮廓,从而实现精确分割。利用 247 幅颈动脉超声图像证实了所提模型的有效性,实验结果显示平均 Dice 系数为 92.38%,与现有数学模型相比,显示出更优越的分割性能。我们的方法能快速有效地对低质量的颈动脉超声图像进行精确的管腔分割,对心脑血管疾病的诊断具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty. Characterization of MSC Growth, Differentiation, and EV Production in CNF Hydrogels Under Static and Dynamic Cultures in Hypoxic and Normoxic Conditions. Mamba- and ResNet-Based Dual-Branch Network for Ultrasound Thyroid Nodule Segmentation. Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Wearable Online Freezing of Gait Detection and Cueing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1