Artificial intelligence in corneal diseases: A narrative review

IF 4.1 3区 医学 Q1 OPHTHALMOLOGY Contact Lens & Anterior Eye Pub Date : 2024-08-27 DOI:10.1016/j.clae.2024.102284
Tuan Nguyen , Joshua Ong , Mouayad Masalkhi , Ethan Waisberg , Nasif Zaman , Prithul Sarker , Sarah Aman , Haotian Lin , Mingjie Luo , Renato Ambrosio , Aydano P. Machado , Darren S.J. Ting , Jodhbir S. Mehta , Alireza Tavakkoli , Andrew G. Lee
{"title":"Artificial intelligence in corneal diseases: A narrative review","authors":"Tuan Nguyen ,&nbsp;Joshua Ong ,&nbsp;Mouayad Masalkhi ,&nbsp;Ethan Waisberg ,&nbsp;Nasif Zaman ,&nbsp;Prithul Sarker ,&nbsp;Sarah Aman ,&nbsp;Haotian Lin ,&nbsp;Mingjie Luo ,&nbsp;Renato Ambrosio ,&nbsp;Aydano P. Machado ,&nbsp;Darren S.J. Ting ,&nbsp;Jodhbir S. Mehta ,&nbsp;Alireza Tavakkoli ,&nbsp;Andrew G. Lee","doi":"10.1016/j.clae.2024.102284","DOIUrl":null,"url":null,"abstract":"<div><div>Corneal diseases represent a growing public health burden, especially in resource-limited settings lacking access to specialized eye care. Artificial intelligence (AI) offers promising solutions for automating the diagnosis and management of corneal conditions. This narrative review examines the application of AI in corneal diseases, focusing on keratoconus, infectious keratitis, pterygium, dry eye disease, Fuchs endothelial corneal dystrophy, and corneal transplantation. AI models integrating diverse imaging modalities (e.g., corneal topography, slit-lamp, and anterior segment OCT images) and clinical data have demonstrated high diagnostic accuracy, often outperforming human experts. Emerging trends include the incorporation of biomechanical data to enhance keratoconus detection, leveraging in vivo confocal microscopy for diagnosing infectious keratitis, and employing multimodal approaches for comprehensive disease analysis. Additionally, AI has shown potential in predicting disease progression, treatment outcomes, and postoperative complications in corneal transplantation. While challenges remain such as population heterogeneity, limited external validation, and the “black box” nature of some models, ongoing advancement in explainable AI, data augmentation, and improved regulatory frameworks can serve to address these limitations.</div></div>","PeriodicalId":49087,"journal":{"name":"Contact Lens & Anterior Eye","volume":"47 6","pages":"Article 102284"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contact Lens & Anterior Eye","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367048424001760","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Corneal diseases represent a growing public health burden, especially in resource-limited settings lacking access to specialized eye care. Artificial intelligence (AI) offers promising solutions for automating the diagnosis and management of corneal conditions. This narrative review examines the application of AI in corneal diseases, focusing on keratoconus, infectious keratitis, pterygium, dry eye disease, Fuchs endothelial corneal dystrophy, and corneal transplantation. AI models integrating diverse imaging modalities (e.g., corneal topography, slit-lamp, and anterior segment OCT images) and clinical data have demonstrated high diagnostic accuracy, often outperforming human experts. Emerging trends include the incorporation of biomechanical data to enhance keratoconus detection, leveraging in vivo confocal microscopy for diagnosing infectious keratitis, and employing multimodal approaches for comprehensive disease analysis. Additionally, AI has shown potential in predicting disease progression, treatment outcomes, and postoperative complications in corneal transplantation. While challenges remain such as population heterogeneity, limited external validation, and the “black box” nature of some models, ongoing advancement in explainable AI, data augmentation, and improved regulatory frameworks can serve to address these limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在角膜疾病中的应用:综述。
角膜疾病是一个日益沉重的公共卫生负担,尤其是在资源有限、缺乏专业眼科护理的环境中。人工智能(AI)为角膜疾病的自动化诊断和管理提供了前景广阔的解决方案。这篇叙述性综述探讨了人工智能在角膜疾病中的应用,重点关注角膜炎、感染性角膜炎、翼状胬肉、干眼症、富克斯内皮角膜营养不良症和角膜移植。集成了多种成像模式(如角膜地形图、裂隙灯和前段 OCT 图像)和临床数据的人工智能模型已证明诊断准确性很高,往往优于人类专家。新出现的趋势包括结合生物力学数据加强角膜病检测、利用体内共焦显微镜诊断感染性角膜炎,以及采用多模态方法进行综合疾病分析。此外,人工智能在预测角膜移植的疾病进展、治疗效果和术后并发症方面也显示出潜力。虽然仍存在人口异质性、有限的外部验证和某些模型的 "黑箱 "性质等挑战,但可解释的人工智能、数据扩增和改进的监管框架的不断进步可有助于解决这些局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
18.80%
发文量
198
审稿时长
55 days
期刊介绍: Contact Lens & Anterior Eye is a research-based journal covering all aspects of contact lens theory and practice, including original articles on invention and innovations, as well as the regular features of: Case Reports; Literary Reviews; Editorials; Instrumentation and Techniques and Dates of Professional Meetings.
期刊最新文献
Validation and repeatability assessment of the Chinese version of the Ocular Surface Disease Index (OSDI), 5-item dry eye (DEQ-5), and contact lens dry eye questionnaire-8 (CLDEQ-8) questionnaires. Artificial intelligence-assisted fitting method using corneal topography outcomes enhances success rate in orthokeratology lens fitting. Randomised controlled trial on effects of topical insulin compared to artificial tears and normal saline on tear inflammatory mediator levels and clinical parameters in diabetics with dry eye disease. Development and evaluation of ocular antibiotic-loaded soluble film inserts. Digital eye strain and clinical correlates in older adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1