Motion Artifact Correction for OCT Microvascular Images Based on Image Feature Matching

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS Journal of Biophotonics Pub Date : 2024-08-28 DOI:10.1002/jbio.202400198
Xudong Chen, Zongqing Ma, Chongyang Wang, Jiaqi Cui, Fan Fan, Xinxiao Gao, Jiang Zhu
{"title":"Motion Artifact Correction for OCT Microvascular Images Based on Image Feature Matching","authors":"Xudong Chen,&nbsp;Zongqing Ma,&nbsp;Chongyang Wang,&nbsp;Jiaqi Cui,&nbsp;Fan Fan,&nbsp;Xinxiao Gao,&nbsp;Jiang Zhu","doi":"10.1002/jbio.202400198","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Optical coherence tomography angiography (OCTA), a functional extension of optical coherence tomography (OCT), is widely employed for high-resolution imaging of microvascular networks. However, due to the relatively low scan rate of OCT, the artifacts caused by the involuntary bulk motion of tissues severely impact the visualization of microvascular networks. This study proposes a fast motion correction method based on image feature matching for OCT microvascular images. First, the rigid motion-related mismatch between B-scans is compensated through the image feature matching based on the improved oriented FAST and rotated BRIEF algorithm. Then, the axial motion within A-scan lines in each B-scan image is corrected according to the displacement deviation between the detected boundaries achieved by the Scharr operator in a non-rigid transformation manner. Finally, an optimized intensity-based Doppler variance algorithm is developed to enhance the robustness of the OCTA imaging. The experimental results demonstrate the effectiveness of the method.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400198","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical coherence tomography angiography (OCTA), a functional extension of optical coherence tomography (OCT), is widely employed for high-resolution imaging of microvascular networks. However, due to the relatively low scan rate of OCT, the artifacts caused by the involuntary bulk motion of tissues severely impact the visualization of microvascular networks. This study proposes a fast motion correction method based on image feature matching for OCT microvascular images. First, the rigid motion-related mismatch between B-scans is compensated through the image feature matching based on the improved oriented FAST and rotated BRIEF algorithm. Then, the axial motion within A-scan lines in each B-scan image is corrected according to the displacement deviation between the detected boundaries achieved by the Scharr operator in a non-rigid transformation manner. Finally, an optimized intensity-based Doppler variance algorithm is developed to enhance the robustness of the OCTA imaging. The experimental results demonstrate the effectiveness of the method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像特征匹配的 OCT 微血管图像运动伪影校正。
光学相干断层血管成像(OCTA)是光学相干断层成像(OCT)的功能扩展,被广泛用于微血管网络的高分辨率成像。然而,由于 OCT 的扫描速率相对较低,组织的不自主运动造成的伪影严重影响了微血管网络的可视化。本研究提出了一种基于图像特征匹配的 OCT 微血管图像快速运动校正方法。首先,基于改进的定向 FAST 和旋转 BRIEF 算法,通过图像特征匹配补偿 B 扫描之间与刚性运动相关的不匹配。然后,根据 Scharr 算子以非刚性变换方式实现的检测边界之间的位移偏差,校正每个 B 扫描图像中 A 扫描线内的轴向运动。最后,开发了一种基于强度的多普勒方差优化算法,以增强 OCTA 成像的鲁棒性。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
期刊最新文献
Front Cover Issue Information SKYQUANT 3D: Quantifying Vascular Anatomy With an Open-Source Workflow for Comprehensive Analysis of Volumetric Optoacoustic Angiography Data Front Cover Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1