Efficacy of slow sand filtration enriched with Trichoderma atroviride in the control of Rhizoctonia solani in soilless culture

IF 2.5 2区 农林科学 Q1 AGRONOMY Crop Protection Pub Date : 2024-08-26 DOI:10.1016/j.cropro.2024.106917
{"title":"Efficacy of slow sand filtration enriched with Trichoderma atroviride in the control of Rhizoctonia solani in soilless culture","authors":"","doi":"10.1016/j.cropro.2024.106917","DOIUrl":null,"url":null,"abstract":"<div><p>Soilless cultivation is increasingly common, but the nutrient-rich drainage from substrate cultivation is often discarded. However, drainage can be safely reused if previously disinfected. Slow sand filtration (SSF) is a low-cost, ecological, and effective method for water disinfection, primarily through biological control. Enhancing SSF with antagonistic microorganisms is not well-studied. Additionally, SSF has not been tested to control <em>Rhizoctonia solani</em>, a phytopathogen that can be spread by irrigation water. Therefore, the objective of his work was to test the efficacy of a slow sand filter improved through the inoculation of the antagonistic fungus <em>Trichoderma atroviride</em>, evaluating its suppression capacity against <em>Rhizoctonia solani</em> spread by the irrigation water in a closed substrate cultivation of cucumber (<em>Cucumis sativus</em>). Five experiments were conducted, testing the presence and absence of a sand filter, <em>T. atroviride</em>, and <em>R. solani</em> in each trial. Median disease severity was expressed on a scale of 1–5. The improved SSF increased disease control percentage by 49% compared to SSF alone and by 86% compared to no disease control method. In some experiments, SSF with <em>T. atroviride</em> totally controlled <em>R. solani</em>. The results confirm that biologically enhanced SSF with <em>T. atroviride</em> can effectively disinfect drainage in closed soilless cultivation systems infected with <em>R. solani.</em></p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261219424003454","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Soilless cultivation is increasingly common, but the nutrient-rich drainage from substrate cultivation is often discarded. However, drainage can be safely reused if previously disinfected. Slow sand filtration (SSF) is a low-cost, ecological, and effective method for water disinfection, primarily through biological control. Enhancing SSF with antagonistic microorganisms is not well-studied. Additionally, SSF has not been tested to control Rhizoctonia solani, a phytopathogen that can be spread by irrigation water. Therefore, the objective of his work was to test the efficacy of a slow sand filter improved through the inoculation of the antagonistic fungus Trichoderma atroviride, evaluating its suppression capacity against Rhizoctonia solani spread by the irrigation water in a closed substrate cultivation of cucumber (Cucumis sativus). Five experiments were conducted, testing the presence and absence of a sand filter, T. atroviride, and R. solani in each trial. Median disease severity was expressed on a scale of 1–5. The improved SSF increased disease control percentage by 49% compared to SSF alone and by 86% compared to no disease control method. In some experiments, SSF with T. atroviride totally controlled R. solani. The results confirm that biologically enhanced SSF with T. atroviride can effectively disinfect drainage in closed soilless cultivation systems infected with R. solani.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在无土栽培中使用富含毛霉的慢沙过滤法防治根瘤菌的功效
无土栽培越来越普遍,但基质栽培产生的营养丰富的排水通常会被丢弃。不过,如果事先经过消毒,排水可以安全地重复使用。慢沙过滤(SSF)是一种低成本、生态、有效的水消毒方法,主要通过生物控制来实现。利用拮抗微生物来强化 SSF 的研究还不多。此外,还没有对 SSF 控制根瘤菌(一种可通过灌溉水传播的植物病原体)进行过测试。因此,他的工作目标是测试通过接种拮抗真菌 Trichoderma atroviride 而改进的慢沙过滤器的功效,评估其在黄瓜(Cucumis sativus)封闭基质栽培中对灌溉水传播的根瘤菌的抑制能力。共进行了五次试验,在每次试验中测试是否存在砂滤器、T. atroviride 和 R. solani。病害严重程度中值以 1-5 级表示。改进后的 SSF 比单独使用 SSF 的病害控制率提高了 49%,比不使用病害控制方法的病害控制率提高了 86%。在一些实验中,含有 T. atroviride 的 SSF 能完全控制 R. solani。结果证实,在感染茄黄萎病菌的封闭式无土栽培系统中,含有阿托维里德的生物强化 SSF 能有效消毒排水系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crop Protection
Crop Protection 农林科学-农艺学
CiteScore
6.10
自引率
3.60%
发文量
200
审稿时长
29 days
期刊介绍: The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics: -Abiotic damage- Agronomic control methods- Assessment of pest and disease damage- Molecular methods for the detection and assessment of pests and diseases- Biological control- Biorational pesticides- Control of animal pests of world crops- Control of diseases of crop plants caused by microorganisms- Control of weeds and integrated management- Economic considerations- Effects of plant growth regulators- Environmental benefits of reduced pesticide use- Environmental effects of pesticides- Epidemiology of pests and diseases in relation to control- GM Crops, and genetic engineering applications- Importance and control of postharvest crop losses- Integrated control- Interrelationships and compatibility among different control strategies- Invasive species as they relate to implications for crop protection- Pesticide application methods- Pest management- Phytobiomes for pest and disease control- Resistance management- Sampling and monitoring schemes for diseases, nematodes, pests and weeds.
期刊最新文献
Monitoring of Larinus spp. (Coleoptera Curculionidae) infesting cardoon and development of a binomial sampling plan for the estimation of Larinus cynarae infestation level in Mediterranean conditions Field evaluation of symbiont-targeted control of Halyomorpha halys in hazelnut crop Anastatus japonicus Ashmead, a potential biological control agent of Riptortus pedestris (Fabricius) Integrated biological control of Diaspis echinocacti (Bouché) on Opuntia ficus-indica (L.) Mill (Cactaceae) using predatory ladybirds and fungal pathogens Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1