{"title":"Behavior-induced phase transitions with far from equilibrium patterning in a SIS epidemic model: Global vs non-local feedback","authors":"Malay Banerjee , Vitaly Volpert , Piero Manfredi , Alberto d’Onofrio","doi":"10.1016/j.physd.2024.134316","DOIUrl":null,"url":null,"abstract":"<div><p>Here, we explore the phase transitions triggered by the implementation of social distancing in a basic spatiotemporal model of a qualitative SIS-type infectious disease. We consider human decisions made based on spatiotemporal information regarding the disease spread. This information can be either local, nonlocal with a finite range, or global in scope.</p><p>We show that nonlocal and global feedbacks, while resulting in the same spatially homogeneous equilibria, lead to a dynamic behavior that is fundamentally distinct from what is observed when decisions are made based on local information.</p><p>Various phenomena arise due to the nonlocal nature of the feedback: (i) Instabilization of Otherwise Stable Homogeneous Equilibria; (ii) Nucleation/Invasion Phenomena; (iii) Onset of Standard and Generalized Traveling Waves, which can incur in wave-pinning; iv) in case of Global Information Feedback, onset of locally stable Far From Equilibrium Patterns that coexist with a locally stable disease-elimination equilibrium. Thus, the nonlocal nature of the human behavior-related feedback introduces a rich array of dynamic behaviors and patterns in the system.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002677/pdfft?md5=71725576a842fabbea0b955187958812&pid=1-s2.0-S0167278924002677-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we explore the phase transitions triggered by the implementation of social distancing in a basic spatiotemporal model of a qualitative SIS-type infectious disease. We consider human decisions made based on spatiotemporal information regarding the disease spread. This information can be either local, nonlocal with a finite range, or global in scope.
We show that nonlocal and global feedbacks, while resulting in the same spatially homogeneous equilibria, lead to a dynamic behavior that is fundamentally distinct from what is observed when decisions are made based on local information.
Various phenomena arise due to the nonlocal nature of the feedback: (i) Instabilization of Otherwise Stable Homogeneous Equilibria; (ii) Nucleation/Invasion Phenomena; (iii) Onset of Standard and Generalized Traveling Waves, which can incur in wave-pinning; iv) in case of Global Information Feedback, onset of locally stable Far From Equilibrium Patterns that coexist with a locally stable disease-elimination equilibrium. Thus, the nonlocal nature of the human behavior-related feedback introduces a rich array of dynamic behaviors and patterns in the system.