{"title":"Optimization test function synthesis with generative adversarial networks and adaptive neuro-fuzzy systems","authors":"","doi":"10.1016/j.ins.2024.121371","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an approach to synthesizing optimization test functions that couples generative adversarial networks and adaptive neuro-fuzzy systems. A generative adversarial network produces optimization landscapes from a database of known optimization test functions, and an adaptive neuro-fuzzy system performs regression on the generated landscapes to provide closed-form expressions. These expressions can be implemented as fuzzy basis function expansions. Eight databases of two-dimensional optimization landscapes reported in the literature are used to train the generative network. Exploratory landscape analysis over the generated samples reveals that the network can lead to new optimization landscapes with features of interest. In addition, fuzzy basis function expansions provide the best approximation results when compared against two symbolic regression frameworks over several selected landscapes. Examples are used to illustrate the ability of these functions to model complex surface artifacts such as plateaus. The proposed approach can be used as a mathematical collaboration tool that couples generative artificial and computational intelligence techniques to formulate high-dimensional optimization test problems from two-dimensional synthesized functions.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524012854","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an approach to synthesizing optimization test functions that couples generative adversarial networks and adaptive neuro-fuzzy systems. A generative adversarial network produces optimization landscapes from a database of known optimization test functions, and an adaptive neuro-fuzzy system performs regression on the generated landscapes to provide closed-form expressions. These expressions can be implemented as fuzzy basis function expansions. Eight databases of two-dimensional optimization landscapes reported in the literature are used to train the generative network. Exploratory landscape analysis over the generated samples reveals that the network can lead to new optimization landscapes with features of interest. In addition, fuzzy basis function expansions provide the best approximation results when compared against two symbolic regression frameworks over several selected landscapes. Examples are used to illustrate the ability of these functions to model complex surface artifacts such as plateaus. The proposed approach can be used as a mathematical collaboration tool that couples generative artificial and computational intelligence techniques to formulate high-dimensional optimization test problems from two-dimensional synthesized functions.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.