Microbiome signature of different stages of hypoxia event in Wonmun Bay

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-08-24 DOI:10.1016/j.marenvres.2024.106673
{"title":"Microbiome signature of different stages of hypoxia event in Wonmun Bay","authors":"","doi":"10.1016/j.marenvres.2024.106673","DOIUrl":null,"url":null,"abstract":"<div><p>We investigated how microbial communities associated with different hypoxic stages respond to environmental changes across three water depths in Wonmun Bay, South Korea. Analysis of temperature, salinity, dissolved oxygen (DO), and nutrient concentrations revealed prominent seasonal shifts and strong stratification during summer hypoxia. Metabarcoding of prokaryotic 16 S rRNA genes and phototrophic eukaryotic chloroplasts along with quantitative PCR (qPCR) revealed variations in the abundance and composition of these communities. Chloroplast 16 S sequences in May were dominated by land plants (93% of Embryophyta), contrasting with the diverse phytoplankton taxa detected in other months. The water communities in May also had higher total microbial abundance than other months but significantly lower alpha diversity. These results suggest a major influence of freshwater discharge on water communities, pre-conditioning for hypoxia events by promoting organic matter decomposition coupled with DO consumption in bottom water. Subsequently, distinct microbial communities were observed across depths during hypoxia in June and July, while less variability was detected among different depths in September and later months when hypoxia events disappeared. Principal Coordinate analysis (PCoA) demonstrated the distinct patterns of microbial communities in May, June, and July from other months. Both sulfur-oxidizing and sulfate-reducing bacteria (SRB) were prevalent in June while the increase of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was observed in mid and bottom water in July. This data suggests the intricate interaction between sulfur and nitrogen-cycling microbes during the hypoxia events in Wonmun Bay. In conclusion, this study provides valuable insights into the microbial community responses to the varying environmental conditions at different stages of hypoxia events in eutrophic coastal ecosystems.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624003349","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated how microbial communities associated with different hypoxic stages respond to environmental changes across three water depths in Wonmun Bay, South Korea. Analysis of temperature, salinity, dissolved oxygen (DO), and nutrient concentrations revealed prominent seasonal shifts and strong stratification during summer hypoxia. Metabarcoding of prokaryotic 16 S rRNA genes and phototrophic eukaryotic chloroplasts along with quantitative PCR (qPCR) revealed variations in the abundance and composition of these communities. Chloroplast 16 S sequences in May were dominated by land plants (93% of Embryophyta), contrasting with the diverse phytoplankton taxa detected in other months. The water communities in May also had higher total microbial abundance than other months but significantly lower alpha diversity. These results suggest a major influence of freshwater discharge on water communities, pre-conditioning for hypoxia events by promoting organic matter decomposition coupled with DO consumption in bottom water. Subsequently, distinct microbial communities were observed across depths during hypoxia in June and July, while less variability was detected among different depths in September and later months when hypoxia events disappeared. Principal Coordinate analysis (PCoA) demonstrated the distinct patterns of microbial communities in May, June, and July from other months. Both sulfur-oxidizing and sulfate-reducing bacteria (SRB) were prevalent in June while the increase of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was observed in mid and bottom water in July. This data suggests the intricate interaction between sulfur and nitrogen-cycling microbes during the hypoxia events in Wonmun Bay. In conclusion, this study provides valuable insights into the microbial community responses to the varying environmental conditions at different stages of hypoxia events in eutrophic coastal ecosystems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
元门湾缺氧事件不同阶段的微生物群特征
我们研究了与韩国元门湾三个水深不同缺氧阶段相关的微生物群落如何对环境变化做出反应。对温度、盐度、溶解氧(DO)和营养物质浓度的分析表明,在夏季缺氧期间存在明显的季节性变化和强烈的分层现象。原核生物 16 S rRNA 基因和光营养真核生物叶绿体的元条码以及定量 PCR(qPCR)显示了这些群落的丰度和组成的变化。5 月份的叶绿体 16 S 序列以陆生植物(93% 为胚叶植物)为主,与其他月份检测到的多种浮游植物类群形成鲜明对比。五月份水体群落的微生物总丰度也高于其他月份,但阿尔法多样性却明显低于其他月份。这些结果表明,淡水排放对水体群落产生了重大影响,通过促进底层水的有机物分解和溶解氧消耗,为缺氧事件的发生预作准备。随后,在 6 月和 7 月缺氧期间,观察到不同深度的微生物群落各不相同,而在 9 月及以后缺氧事件消失的月份,不同深度的微生物群落之间的差异较小。主坐标分析(PCoA)表明,5 月、6 月和 7 月的微生物群落模式与其他月份截然不同。硫氧化菌和硫酸盐还原菌(SRB)在 6 月份很普遍,而 7 月份在中层和底层水域观察到氨氧化古细菌(AOA)和氨氧化细菌(AOB)的增加。这些数据表明,在元门湾缺氧事件期间,硫和氮循环微生物之间存在着错综复杂的相互作用。总之,这项研究为了解富营养化沿岸生态系统缺氧事件不同阶段微生物群落对不同环境条件的反应提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. Mutligenerational chronic exposure to near future ocean acidification in European sea bass (Dicentrarchus labrax): Insights into the regulation of the transcriptome in a sensory organ involved in feed intake, the tongue. Quarry rock reef design features influence fish assemblage structure across a systematically heterogenous restoration reef. Microbial ocean-atmosphere transfer: The influence of sewage discharge into coastal waters on bioaerosols from an urban beach in the subtropical Atlantic. Skeletal magnesium content in Antarctic echinoderms along a latitudinal gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1