Jiujiu Yi , Wenguang Chen , Mengru Wang, Guoli Lian, Siyan Tao, Zheng-Jun Li
{"title":"Application of genetic code expansion to regulate the synthesis of poly(lactate-co-3-hydroxybutyrate) in Escherichia coli","authors":"Jiujiu Yi , Wenguang Chen , Mengru Wang, Guoli Lian, Siyan Tao, Zheng-Jun Li","doi":"10.1016/j.bej.2024.109478","DOIUrl":null,"url":null,"abstract":"<div><p>Genetic codon expansion has the potential to introduce a variety of unnatural amino acids to specific sites within target proteins. In this study, genetic codon expansion was employed to regulate the enzyme expression in metabolic pathways. Firstly, a purple protein from <em>Actinia tenebrosa</em> was selected as the candidate to be engineered. Bringing in UAG stop codon caused premature termination of translation, while expressing orthogonal aminoacyl-tRNA synthetase and tRNA from <em>Methanococcus jannaschii</em> restored translation at UAG site. However, leakage expression was observed without addition of unnatural amino acids, still it can be decreased by increasing numbers of UAG mutations. Subsequently, poly(lactate-<em>co</em>-3-hydroxyburyrate) [P(LA-3HB)] biosynthesis pathway was constructed in <em>Escherichia coli</em>, and propionyl-CoA transferase was mutated to harboring one or two more stop codons. With genetic codon expansion tools, the function of propionyl-CoA transferase was restored, promoting cells to synthesize P(LA-3HB) copolymer. Moreover, the lactate monomer content was regulated ranging from 0 to 33.42 mol% by altering the addition time of inducers. Finally, the strain accumulated 27.09 g/L P(25.1 mol% LA-3HB) in 5-L bioreactor cultivation. This is the first report on metabolic engineering of polyhydroxyalkanoate biosynthesis through genetic codon expansion and would provide helpful strategies to achieve dynamic regulation of multiple metabolic pathways.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"211 ","pages":"Article 109478"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002651","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic codon expansion has the potential to introduce a variety of unnatural amino acids to specific sites within target proteins. In this study, genetic codon expansion was employed to regulate the enzyme expression in metabolic pathways. Firstly, a purple protein from Actinia tenebrosa was selected as the candidate to be engineered. Bringing in UAG stop codon caused premature termination of translation, while expressing orthogonal aminoacyl-tRNA synthetase and tRNA from Methanococcus jannaschii restored translation at UAG site. However, leakage expression was observed without addition of unnatural amino acids, still it can be decreased by increasing numbers of UAG mutations. Subsequently, poly(lactate-co-3-hydroxyburyrate) [P(LA-3HB)] biosynthesis pathway was constructed in Escherichia coli, and propionyl-CoA transferase was mutated to harboring one or two more stop codons. With genetic codon expansion tools, the function of propionyl-CoA transferase was restored, promoting cells to synthesize P(LA-3HB) copolymer. Moreover, the lactate monomer content was regulated ranging from 0 to 33.42 mol% by altering the addition time of inducers. Finally, the strain accumulated 27.09 g/L P(25.1 mol% LA-3HB) in 5-L bioreactor cultivation. This is the first report on metabolic engineering of polyhydroxyalkanoate biosynthesis through genetic codon expansion and would provide helpful strategies to achieve dynamic regulation of multiple metabolic pathways.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.