Navid Erfani , Luqmanulhakim Baharudin , Matthew Watson
{"title":"Recent advances and intensifications in Haber-Bosch ammonia synthesis process","authors":"Navid Erfani , Luqmanulhakim Baharudin , Matthew Watson","doi":"10.1016/j.cep.2024.109962","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia is crucial as it serves as a key nitrogen source in fertilizer production to enhance crop growth and as an emerging energy carrier due to its high hydrogen content and ease of liquefaction. Despite various technological changes proposed and implemented since its inception, the Haber-Bosch process remains the predominant method for ammonia production. We first give a bird's eye view of current ammonia synthesis technologies available based on the latest trends, to justify why we think the conventional Haber-Bosch process is still a relevant technology worth investigation for further improvement. We review the engineering design modifications within the ammonia synthesis loop, examining improvements in the efficiency of ammonia synthesis. This review gives an overview of recent research and advancements focused on process intensification within the loop and its individual key components, i.e., the reactor and the catalyst, separation, and purge gas recovery technologies. It highlights significant progress and explores potential future directions in these areas.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"204 ","pages":"Article 109962"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0255270124003003/pdfft?md5=7c47a74d3e5979cb209424c6d70cd03f&pid=1-s2.0-S0255270124003003-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia is crucial as it serves as a key nitrogen source in fertilizer production to enhance crop growth and as an emerging energy carrier due to its high hydrogen content and ease of liquefaction. Despite various technological changes proposed and implemented since its inception, the Haber-Bosch process remains the predominant method for ammonia production. We first give a bird's eye view of current ammonia synthesis technologies available based on the latest trends, to justify why we think the conventional Haber-Bosch process is still a relevant technology worth investigation for further improvement. We review the engineering design modifications within the ammonia synthesis loop, examining improvements in the efficiency of ammonia synthesis. This review gives an overview of recent research and advancements focused on process intensification within the loop and its individual key components, i.e., the reactor and the catalyst, separation, and purge gas recovery technologies. It highlights significant progress and explores potential future directions in these areas.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.