Molecular spectroscopy, solvent effect, and DFT studies of azithromycin solvate

{"title":"Molecular spectroscopy, solvent effect, and DFT studies of azithromycin solvate","authors":"","doi":"10.1016/j.saa.2024.125057","DOIUrl":null,"url":null,"abstract":"<div><p>Azithromycin ethanol solvate monohydrate [C<sub>38</sub>H<sub>72</sub>N<sub>2</sub>O<sub>12</sub>0.5(C<sub>2</sub>H<sub>6</sub>O)H<sub>2</sub>O], abbreviated by AZM-MH-EtOH, was synthesized by slow evaporation method and investigated by powder X-ray diffraction, Raman and infrared (IR) spectroscopy combined with density functional theory (DFT) studies. Electronic and vibrational properties were properly investigated based on a theoretical study of solvation effects, using implicit solvation and solute electron density models. The electronic and vibrational studies were evaluated under aqueous, ethanolic, and vacuum conditions. The electronic structure calculations indicated that the AZM-MH-EtOH is chemically more stable in solvents compared to vacuum condition. Ultraviolet–visible (UV–vis) measurements confirmed the stability of the material in ethanolic medium, due to higher absorbance values compared to the aqueous medium. Vibrational changes were observed in the Raman and IR bands, which have connection with hydrogen bonds. The experimental vibration modes showed better accordance with the predicted modes’ values under solvation effects, but a slight divergence is noticed when we compared to vibration modes obtained in vacuum. Furthermore, the results have revealed a greater affinity profile of AZM-MH-EtOH for water and ethanol solvents compared to theoretical data under vacuum condition.</p></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138614252401223X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Azithromycin ethanol solvate monohydrate [C38H72N2O120.5(C2H6O)H2O], abbreviated by AZM-MH-EtOH, was synthesized by slow evaporation method and investigated by powder X-ray diffraction, Raman and infrared (IR) spectroscopy combined with density functional theory (DFT) studies. Electronic and vibrational properties were properly investigated based on a theoretical study of solvation effects, using implicit solvation and solute electron density models. The electronic and vibrational studies were evaluated under aqueous, ethanolic, and vacuum conditions. The electronic structure calculations indicated that the AZM-MH-EtOH is chemically more stable in solvents compared to vacuum condition. Ultraviolet–visible (UV–vis) measurements confirmed the stability of the material in ethanolic medium, due to higher absorbance values compared to the aqueous medium. Vibrational changes were observed in the Raman and IR bands, which have connection with hydrogen bonds. The experimental vibration modes showed better accordance with the predicted modes’ values under solvation effects, but a slight divergence is noticed when we compared to vibration modes obtained in vacuum. Furthermore, the results have revealed a greater affinity profile of AZM-MH-EtOH for water and ethanol solvents compared to theoretical data under vacuum condition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿奇霉素溶胶的分子光谱、溶剂效应和 DFT 研究
采用缓慢蒸发法合成了一水阿奇霉素乙醇溶胶[C38H72N2O120.5(C2H6O)H2O],简称为 AZM-MH-EtOH,并通过粉末 X 射线衍射、拉曼光谱和红外光谱以及密度泛函理论(DFT)进行了研究。在对溶解效应进行理论研究的基础上,利用隐式溶解和溶质电子密度模型对电子和振动特性进行了适当的研究。电子和振动研究是在水溶液、乙醇和真空条件下进行的。电子结构计算表明,与真空条件相比,AZM-MH-EtOH 在溶剂中的化学性质更加稳定。紫外-可见光(UV-vis)测量证实了该材料在乙醇介质中的稳定性,因为与水介质相比,它的吸光值更高。在拉曼和红外波段中观察到了振动变化,这与氢键有关。实验中的振动模式与溶解效应下的预测模式值更为吻合,但与真空中获得的振动模式相比,则略有不同。此外,与真空条件下的理论数据相比,实验结果表明 AZM-MH-EtOH 与水和乙醇溶剂的亲和性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
期刊最新文献
∼2 μm broadband luminescence in Tm3+/Ho3+/Er3+-doped tellurite glass Assessment of the binding mechanism of ergothioneine to human serum albumin: Multi-spectroscopy, molecular docking and molecular dynamic simulation Determination of aflatoxin B1 in wheat using Raman spectroscopy combined with chemometrics Mn4+-activated Sc-based hexafluoride red phosphor K5Sc3F14: Synthesis, luminescence, and its applications in blue-pump WLEDs Simultaneous quantitative analysis of multiple metabolites using label-free surface-enhanced Raman spectroscopy and explainable deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1