Random-item Rasch models and explanatory extensions: A worked example using L2 vocabulary test item responses

Karen J. Dunn
{"title":"Random-item Rasch models and explanatory extensions: A worked example using L2 vocabulary test item responses","authors":"Karen J. Dunn","doi":"10.1016/j.rmal.2024.100143","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the application and relevance of random-item Rasch models in second language (L2) vocabulary research and testing scenarios, aiming to increase understanding of this statistical method amongst researchers and academics working in the L2 assessment field and more broadly in applied linguistics. A step-by-step description of the links between Generalized Linear Mixed Models (GLMMs) and Rasch models is given. It is then demonstrated how random-item-random-person (RPRI) Rasch models (De Boeck, 2008) can be built within a GLMM framework, and the modelling of an explanatory extension is presented in which the role of word and item characteristics are tested as fixed effect covariates in explaining item difficulty in an L2 vocabulary test completed by Hungarian school-age learners of English.</p></div>","PeriodicalId":101075,"journal":{"name":"Research Methods in Applied Linguistics","volume":"3 3","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772766124000491/pdfft?md5=fa19df9bec4ef16985819dbdeedaefe0&pid=1-s2.0-S2772766124000491-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods in Applied Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772766124000491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the application and relevance of random-item Rasch models in second language (L2) vocabulary research and testing scenarios, aiming to increase understanding of this statistical method amongst researchers and academics working in the L2 assessment field and more broadly in applied linguistics. A step-by-step description of the links between Generalized Linear Mixed Models (GLMMs) and Rasch models is given. It is then demonstrated how random-item-random-person (RPRI) Rasch models (De Boeck, 2008) can be built within a GLMM framework, and the modelling of an explanatory extension is presented in which the role of word and item characteristics are tested as fixed effect covariates in explaining item difficulty in an L2 vocabulary test completed by Hungarian school-age learners of English.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机项目 Rasch 模型和解释性扩展:使用 L2 词汇测试项目回答的工作示例
本文介绍了随机项目 Rasch 模型在第二语言(L2)词汇研究和测试场景中的应用和相关性,旨在加深从事 L2 评估领域以及更广泛的应用语言学领域的研究人员和学者对这一统计方法的理解。本文逐步描述了广义线性混合模型(GLMM)和 Rasch 模型之间的联系。然后,演示了如何在 GLMM 框架内建立随机项目-随机人(RPRI)Rasch 模型(De Boeck,2008 年),并介绍了解释性扩展建模,其中测试了单词和项目特征作为固定效应协变量在解释匈牙利学龄英语学习者完成的 L2 词汇测试中的项目难度方面所起的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Toward ethical praxis in longitudinal research with children: Reflecting on ethical tensions in participatory research A conversation analysis-complex dynamics systems theory (CA-CDST) approach for analyzing longitudinal development in L2 pragmatics Categorising speakers’ language background: Theoretical assumptions and methodological challenges for learner corpus research Data from role plays and elicited conversations: What do they show about L2 interactional competence?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1