Development of a 3D model for particle-wall collision and induced rotation and its influence on particle trajectories

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL Particuology Pub Date : 2024-08-10 DOI:10.1016/j.partic.2024.08.001
Cairen Miranda , John Palmore Jr.
{"title":"Development of a 3D model for particle-wall collision and induced rotation and its influence on particle trajectories","authors":"Cairen Miranda ,&nbsp;John Palmore Jr.","doi":"10.1016/j.partic.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The present research focuses on improving the prediction of rotating particle collisions. Current particle-surface collision models do not accurately predict the particle rebound when taking rotation into account. Experimental data, such as the studies by Gorham and Kharaz (2000), Buck, Tang, Heinrich, Deen and Kuipers (2017), and Dong and Moys (2006) show that the Tsuji, Oshima and Morikawa (1985) model is inaccurate due to the incorrect tangential coefficient of restitution assumption. Hoomans, Kuipers, Mohd Salleh, Stein, and Seville (2001) introduced a similar model to the work by Tsuji et al. (1985) which includes a tangential coefficient of restitution but is only in two dimensions and does not consider out of plane rebounds. This work re-derives the particle collision model from the impulse equations for binary collisions in 3D while considering rotating particles. The derived equations in this work compares well to experimental particle-surface impact studies. The implications of this model are seen by investigating erosion due to particle collision in a simple pipe bend. It is shown that Tsuji et al. (1985) over predicts the erosion. These small differences in particle trajectories between the present model and the Tsuji et al. (1985) model will grow in complex flows with multiple close range particle impacts leading to inaccurate erosion predictions which will negatively impact the design of turbomachinery and pneumatic pipes.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 211-228"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001500","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present research focuses on improving the prediction of rotating particle collisions. Current particle-surface collision models do not accurately predict the particle rebound when taking rotation into account. Experimental data, such as the studies by Gorham and Kharaz (2000), Buck, Tang, Heinrich, Deen and Kuipers (2017), and Dong and Moys (2006) show that the Tsuji, Oshima and Morikawa (1985) model is inaccurate due to the incorrect tangential coefficient of restitution assumption. Hoomans, Kuipers, Mohd Salleh, Stein, and Seville (2001) introduced a similar model to the work by Tsuji et al. (1985) which includes a tangential coefficient of restitution but is only in two dimensions and does not consider out of plane rebounds. This work re-derives the particle collision model from the impulse equations for binary collisions in 3D while considering rotating particles. The derived equations in this work compares well to experimental particle-surface impact studies. The implications of this model are seen by investigating erosion due to particle collision in a simple pipe bend. It is shown that Tsuji et al. (1985) over predicts the erosion. These small differences in particle trajectories between the present model and the Tsuji et al. (1985) model will grow in complex flows with multiple close range particle impacts leading to inaccurate erosion predictions which will negatively impact the design of turbomachinery and pneumatic pipes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发粒子壁碰撞和诱导旋转三维模型及其对粒子轨迹的影响
本研究的重点是改进旋转粒子碰撞的预测。目前的粒子-表面碰撞模型无法准确预测考虑旋转因素时的粒子反弹。实验数据,如 Gorham 和 Kharaz(2000 年)、Buck、Tang、Heinrich、Deen 和 Kuipers(2017 年)以及 Dong 和 Moys(2006 年)的研究表明,辻、大岛和森川(1985 年)模型由于不正确的切向恢复系数假设而不准确。Hoomans、Kuipers、Mohd Salleh、Stein 和 Seville(2001 年)提出了一个与 Tsuji 等人(1985 年)的研究类似的模型,其中包括切向弹性系数,但该模型只有两个维度,且不考虑平面外反弹。这项研究从三维二元碰撞的脉冲方程中重新推导出粒子碰撞模型,同时考虑了旋转粒子。这项工作中推导出的方程与粒子表面撞击实验研究结果比较吻合。通过研究简单弯管中粒子碰撞引起的侵蚀,可以看出该模型的意义。结果表明,Tsuji 等人(1985 年)对侵蚀的预测过高。本模型与 Tsuji 等人(1985 年)模型在粒子轨迹上的微小差异会在具有多次近距离粒子撞击的复杂流动中扩大,从而导致不准确的侵蚀预测,这将对透平机械和气动管道的设计产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
期刊最新文献
Mesoscale modeling on the influence of surfactants on seepage law during water injection in coal Optimisation of parameters of a dual-axis soil remediation device based on response surface methodology and machine learning algorithm Study of hydraulic transport characteristics and erosion wear of twisted four-lobed pipe based on CFD-DEM A comprehensive numerical investigation of the spray characteristics in spill-return atomizers using coupled VOF and Euler-Lagrange approach Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1