Two-dimensional Cu2N–A high-performance anode material for ion batteries with excellent electrical conductivity and electrolyte wettability

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Physica E-low-dimensional Systems & Nanostructures Pub Date : 2024-08-29 DOI:10.1016/j.physe.2024.116091
{"title":"Two-dimensional Cu2N–A high-performance anode material for ion batteries with excellent electrical conductivity and electrolyte wettability","authors":"","doi":"10.1016/j.physe.2024.116091","DOIUrl":null,"url":null,"abstract":"<div><p>Determining suitable anode materials is crucial in the advancement of lithium-ion and sodium-ion battery technologies. We propose that the two-dimensional (2D) material Cu<sub>2</sub>N holds promise as a viable anode candidate. The Cu<sub>2</sub>N monolayer exhibits a stable checkerboard lattice crystal structure, ensuring structural integrity. Its excellent metallic electronic structure facilitates efficient conductivity during battery operation. We have observed that Li/Na ions can chemically bond to Cu<sub>2</sub>N substrates via specific charge exchange mechanisms. Moreover, the Cu<sub>2</sub>N monolayer demonstrates favorable wettability and compatibility with common electrolytes used in lithium-ion and sodium-ion batteries, including solvent molecules and metal salts. Our findings indicate that the Li/Na storage capacity of the Cu<sub>2</sub>N monolayer reaches approximately 760/760 mAh/g, surpassing that of graphite anodes significantly. Notably, the Li/Na diffusion barrier on the Cu<sub>2</sub>N monolayer is merely 5/13 meV, lower than that of most other 2D anode materials. Our results underscore the potential of the Cu<sub>2</sub>N monolayer as an outstanding electrode material, offering high storage capacity, rapid charge/discharge rates, and favorable wettability with electrolytes.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001954","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Determining suitable anode materials is crucial in the advancement of lithium-ion and sodium-ion battery technologies. We propose that the two-dimensional (2D) material Cu2N holds promise as a viable anode candidate. The Cu2N monolayer exhibits a stable checkerboard lattice crystal structure, ensuring structural integrity. Its excellent metallic electronic structure facilitates efficient conductivity during battery operation. We have observed that Li/Na ions can chemically bond to Cu2N substrates via specific charge exchange mechanisms. Moreover, the Cu2N monolayer demonstrates favorable wettability and compatibility with common electrolytes used in lithium-ion and sodium-ion batteries, including solvent molecules and metal salts. Our findings indicate that the Li/Na storage capacity of the Cu2N monolayer reaches approximately 760/760 mAh/g, surpassing that of graphite anodes significantly. Notably, the Li/Na diffusion barrier on the Cu2N monolayer is merely 5/13 meV, lower than that of most other 2D anode materials. Our results underscore the potential of the Cu2N monolayer as an outstanding electrode material, offering high storage capacity, rapid charge/discharge rates, and favorable wettability with electrolytes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维 Cu2N--具有优异导电性和电解质润湿性的高性能离子电池负极材料
确定合适的负极材料对于锂离子和钠离子电池技术的发展至关重要。我们提出,二维(2D)材料 Cu2N 有望成为一种可行的候选负极材料。Cu2N 单层呈现稳定的棋盘格晶体结构,确保了结构的完整性。其出色的金属电子结构有助于在电池工作期间实现高效导电。我们观察到,锂/镍离子可通过特定的电荷交换机制与 Cu2N 基底发生化学键合。此外,Cu2N 单层还表现出良好的润湿性以及与锂离子和钠离子电池中常用电解质(包括溶剂分子和金属盐)的兼容性。我们的研究结果表明,Cu2N 单层的锂/钽存储容量达到约 760/760 mAh/g,大大超过了石墨阳极。值得注意的是,Cu2N 单层上的锂/钽扩散势垒仅为 5/13 meV,低于大多数其他二维阳极材料。我们的研究结果凸显了 Cu2N 单层作为一种优秀电极材料的潜力,它具有高存储容量、快速充放电速率和良好的电解质润湿性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
期刊最新文献
The key role of anti-solvent temperature in quantum dot/perovskite core-shell nanowire array solar cells A metasurface for linear-to-circular polarization conversion and sensing based on quasi-BIC Design of spintronic devices based on adjustable half-metallicity induced by electric field in A-type antiferromagnetic bilayer NiI2 Resonant tunneling properties of laser dressed hyperbolic Pöschl-Teller double barrier potential Neutral donors confined in semiconductor coupled quantum dot-rings: Position-dependent properties and optical transparency phenomenon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1