Shanyong Yi , Bin Zhao , Lai Wei , Zhijun Yao , Bin Yang
{"title":"Glucocorticoid alleviates hypothalamic nerve injury via remodeling HPA axis homeostasis in stressed rats","authors":"Shanyong Yi , Bin Zhao , Lai Wei , Zhijun Yao , Bin Yang","doi":"10.1016/j.bbr.2024.115223","DOIUrl":null,"url":null,"abstract":"<div><p>Excessive stress can exceed the adjustment ability of body and cause injury and dysfunction, while elucidation of the mechanism and prevention measures of stress-related injury are still insufficient. The present study was to observe the effect of glucocorticoid (GC) on stress-induced hypothalamic nerve injury and elucidate the potential mechanism. The present study intended to establish a chronic restraint stress rat model for follow-up study. Open field test and elevated plus maze test were used to observe behavioral changes of stress rats; Enzyme-linked immunosorbent assay (ELISA) was used to detect changes in the levels of hypothalamus-pituitary-adrenal (HPA) axis-related hormones and inflammatory factors in hypothalamus; toluidine blue staining was used to observe pathological changes of hypothalamus. The results showed that stress rats showed obvious anxiety-like behaviors, the levels of HPA axis-related hormones and inflammatory factors showed abnormal fluctuations, and morphological results showed significant nerve injury in hypothalamus. Low-dose GC treatment significantly improved behavioral changes, alleviated hypothalamic nerve injury, and restored hypothalamic levels of inflammatory factors, serum levels of GC, corticotropin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) and GC level in adrenal cortex of stressed rats, while GC receptor (GR) inhibitor, CRH receptor inhibitor, and adrenalectomy reversed the ameliorative effects of low-dose GC. Our study clarified that low-dose GC can restore stress coping ability by reshaping the homeostasis of the HPA axis, thus alleviating behavioral abnormalities and hypothalamic nerve injury in stressed rats.</p></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"475 ","pages":"Article 115223"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824003796","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive stress can exceed the adjustment ability of body and cause injury and dysfunction, while elucidation of the mechanism and prevention measures of stress-related injury are still insufficient. The present study was to observe the effect of glucocorticoid (GC) on stress-induced hypothalamic nerve injury and elucidate the potential mechanism. The present study intended to establish a chronic restraint stress rat model for follow-up study. Open field test and elevated plus maze test were used to observe behavioral changes of stress rats; Enzyme-linked immunosorbent assay (ELISA) was used to detect changes in the levels of hypothalamus-pituitary-adrenal (HPA) axis-related hormones and inflammatory factors in hypothalamus; toluidine blue staining was used to observe pathological changes of hypothalamus. The results showed that stress rats showed obvious anxiety-like behaviors, the levels of HPA axis-related hormones and inflammatory factors showed abnormal fluctuations, and morphological results showed significant nerve injury in hypothalamus. Low-dose GC treatment significantly improved behavioral changes, alleviated hypothalamic nerve injury, and restored hypothalamic levels of inflammatory factors, serum levels of GC, corticotropin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) and GC level in adrenal cortex of stressed rats, while GC receptor (GR) inhibitor, CRH receptor inhibitor, and adrenalectomy reversed the ameliorative effects of low-dose GC. Our study clarified that low-dose GC can restore stress coping ability by reshaping the homeostasis of the HPA axis, thus alleviating behavioral abnormalities and hypothalamic nerve injury in stressed rats.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.