S-scheme mechanism in the TiO2/Cu2O@Cu system toward selective degradation of an electron-rich dye pollutant under solar light

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Liquids Pub Date : 2024-08-30 DOI:10.1016/j.molliq.2024.125830
{"title":"S-scheme mechanism in the TiO2/Cu2O@Cu system toward selective degradation of an electron-rich dye pollutant under solar light","authors":"","doi":"10.1016/j.molliq.2024.125830","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to reach a selective nanocomposite based on Cu and TiO<sub>2</sub> nanoparticles (NPs) through a sol–gel followed by chemical reduction. Various methods such as XRD, SEM, TEM, HRTEM, BET, Raman, FTIR, DRS, XPS and PL analysis were used to characterize the prepared NPs. The reduced nature of Cu in nanocomposite was evidenced by its X-ray photoelectron spectral characteristics and its HRTEM image. Due to the presence of Cu NPs, light absorption in solar radiation by nanocomposite was considerably enhanced and caused more efficient charge carriers separation. A CCD was used to evaluate the photoactivity of the solar-driven photocatalyst by degrading methylene blue (MB) as a single model electron-rich organic pollutant. In optimal conditions, the highest photocatalytic activity reached 95.64 %. In this study, band structure and reactive species scavenging results confirmed an S-scheme mechanism for charge carrier transfer during photodegradation. The plasmonic S-scheme TiO<sub>2</sub>/Cu<sub>2</sub>O@Cu heterojunction photocatalyst exhibited remarkably strong photocatalytic selectivity toward MB in binary mixtures of MB with eosin B and rhodamine B. A preference for degradation of MB over safranin (Saf) is confirmed by the faster degradation rate of MB than that of Saf. S-scheme mechanism, Cu doping and dye sensitization all contributed to outstanding selective photodegradation performance.</p></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732224018890","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to reach a selective nanocomposite based on Cu and TiO2 nanoparticles (NPs) through a sol–gel followed by chemical reduction. Various methods such as XRD, SEM, TEM, HRTEM, BET, Raman, FTIR, DRS, XPS and PL analysis were used to characterize the prepared NPs. The reduced nature of Cu in nanocomposite was evidenced by its X-ray photoelectron spectral characteristics and its HRTEM image. Due to the presence of Cu NPs, light absorption in solar radiation by nanocomposite was considerably enhanced and caused more efficient charge carriers separation. A CCD was used to evaluate the photoactivity of the solar-driven photocatalyst by degrading methylene blue (MB) as a single model electron-rich organic pollutant. In optimal conditions, the highest photocatalytic activity reached 95.64 %. In this study, band structure and reactive species scavenging results confirmed an S-scheme mechanism for charge carrier transfer during photodegradation. The plasmonic S-scheme TiO2/Cu2O@Cu heterojunction photocatalyst exhibited remarkably strong photocatalytic selectivity toward MB in binary mixtures of MB with eosin B and rhodamine B. A preference for degradation of MB over safranin (Saf) is confirmed by the faster degradation rate of MB than that of Saf. S-scheme mechanism, Cu doping and dye sensitization all contributed to outstanding selective photodegradation performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳光下 TiO2/Cu2O@Cu 系统选择性降解富电子染料污染物的 S 模式机制
本研究旨在通过溶胶凝胶法和化学还原法制备一种基于铜和二氧化钛纳米粒子(NPs)的选择性纳米复合材料。研究采用了 XRD、SEM、TEM、HRTEM、BET、拉曼、傅立叶变换红外光谱、DRS、XPS 和 PL 分析等多种方法对制备的 NPs 进行表征。纳米复合材料中铜的还原性可以从其 X 射线光电子能谱特征和 HRTEM 图像中得到证明。由于 Cu NPs 的存在,纳米复合材料对太阳辐射的光吸收大大增强,电荷载流子分离效率更高。通过降解亚甲基蓝(MB)这一单一富电子有机污染物模型,利用 CCD 评估了太阳能驱动光催化剂的光活性。在最佳条件下,最高光催化活性达到 95.64%。该研究的能带结构和反应物清除结果证实了光降解过程中电荷载流子转移的 S 型机制。在甲基溴与曙红 B 和罗丹明 B 的二元混合物中,质子 S 型 TiO2/Cu2O@Cu 异质结光催化剂对甲基溴表现出极强的光催化选择性。S 型机制、铜掺杂和染料敏化都有助于实现出色的选择性光降解性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
期刊最新文献
The adsorption of p-hydroxybenzoic acid on graphene oxide under different pH and in-situ desorption in direct current electric field Cucurbit[6]uril-stabilized copper oxide nanoparticles: Synthesis, potent antimicrobial and in vitro anticancer activity Molecular dynamics study on effects of the synergistic effect of anions and cations on the dissolution of cellulose in ionic liquids Phase behavior and biological activity of lyotropic liquid crystal systems doped with 1,2,3-triazole derivative Doxorubicin removal from an aqueous environment efficiently using bimetallic organic frameworks: Synthesis, characterization, and optimization of adsorption procedure using the Box–Behnken design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1