Pt nanoclusters as co-catalysts for efficient photocatalytic hydrogen evolution

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Solid State Sciences Pub Date : 2024-08-29 DOI:10.1016/j.solidstatesciences.2024.107680
Junhao Jia , Yingjun Wang , Xiang Miao , Chengjian Wu , Min Zhang , Yunyuan Dong , Jianming Liao , Xiaobin Chen , Jiacheng Yao , Hongfei Yin
{"title":"Pt nanoclusters as co-catalysts for efficient photocatalytic hydrogen evolution","authors":"Junhao Jia ,&nbsp;Yingjun Wang ,&nbsp;Xiang Miao ,&nbsp;Chengjian Wu ,&nbsp;Min Zhang ,&nbsp;Yunyuan Dong ,&nbsp;Jianming Liao ,&nbsp;Xiaobin Chen ,&nbsp;Jiacheng Yao ,&nbsp;Hongfei Yin","doi":"10.1016/j.solidstatesciences.2024.107680","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic water splitting for hydrogen production is an ideal strategy to relieve the energy crisis. In this work, Pt nanoclusters are employed as a co-catalyst to modify g-C<sub>3</sub>N<sub>4</sub> for optimizing the photocatalytic hydrogen evolution performance. Compared with the pristine g-C<sub>3</sub>N<sub>4</sub>, the Pt nanoclusterss/g-C<sub>3</sub>N<sub>4</sub> nanocomposites exhibit dramatic enhancement toward H<sub>2</sub> production, where the H<sub>2</sub> evolution rate of CN-Pt-C2 is nearly 425.1 times higher than pristine g-C<sub>3</sub>N<sub>4</sub>. The phase structure, morphology, optical properties, and surface chemical states of the fabricated samples are fully investigated. Based on the systematical characterizations, the reason for the enhanced H<sub>2</sub> generation performance is disclosed. It is expected this work can provide a valuable reference for the fabrication of a co-catalyst-based photocatalytic system.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"156 ","pages":"Article 107680"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824002450","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic water splitting for hydrogen production is an ideal strategy to relieve the energy crisis. In this work, Pt nanoclusters are employed as a co-catalyst to modify g-C3N4 for optimizing the photocatalytic hydrogen evolution performance. Compared with the pristine g-C3N4, the Pt nanoclusterss/g-C3N4 nanocomposites exhibit dramatic enhancement toward H2 production, where the H2 evolution rate of CN-Pt-C2 is nearly 425.1 times higher than pristine g-C3N4. The phase structure, morphology, optical properties, and surface chemical states of the fabricated samples are fully investigated. Based on the systematical characterizations, the reason for the enhanced H2 generation performance is disclosed. It is expected this work can provide a valuable reference for the fabrication of a co-catalyst-based photocatalytic system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铂纳米团簇作为高效光催化氢气进化的辅助催化剂
光催化分水制氢是缓解能源危机的理想策略。本研究采用铂纳米团簇作为辅助催化剂,对 g-C3N4 进行改性,以优化其光催化制氢性能。与原始 g-C3N4 相比,铂纳米团簇/g-C3N4 纳米复合材料的氢气产生率显著提高,CN-Pt-C2 的氢气进化率是原始 g-C3N4 的近 425.1 倍。对制备样品的相结构、形貌、光学特性和表面化学状态进行了全面研究。在系统表征的基础上,揭示了 H2 生成性能增强的原因。希望这项工作能为基于助催化剂的光催化系统的制备提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
期刊最新文献
Production of high capacity porous nickel borides via novel molten salt electrolysis Optical response characteristics & radiation shielding properties of Sm3+ ions activated tungsten alkali borate glasses for visible laser & radiation shielding applications Impact of concentration and excitation wavelength on fluorescence behaviour of CuInS2 QDs Graphical abstract TOC Graphical abstract TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1