首页 > 最新文献

Solid State Sciences最新文献

英文 中文
Enhanced acetone gas sensor via TiO2 nanofiber-NiO nanoparticle heterojunction 通过 TiO2 纳米纤维-NiO 纳米粒子异质结强化丙酮气体传感器
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-31 DOI: 10.1016/j.solidstatesciences.2024.107683

We present a high surface area sensor comprising NiO nanoparticles (NPs) incorporated within porous TiO2 nanofibers (NFs), showing a remarkable response to acetone. Initially, we synthesized Polyvinylpyrrolidone (PVP) NFs containing titanium (Ti) and nickel (Ni) salts using a simple electrospinning method. Subsequent calcination of the PVP NFs led to the formation of NiO NPs embedded within the porous TiO2 NFs. The resulting heterostructure material exhibited a significant response to acetone detection, with a ratio of electrical resistance in air (Ra) to that in the presence of gas (Rg) reaching 83 at its optimal operating temperature of 300 °C. Furthermore, it demonstrated stable performance under high relative humidity conditions.

我们展示了一种高比表面积传感器,它由多孔二氧化钛纳米纤维(NFs)中的氧化镍纳米颗粒(NPs)组成,对丙酮有显著的反应。最初,我们采用简单的电纺丝方法合成了含有钛(Ti)和镍(Ni)盐的聚乙烯吡咯烷酮(PVP)纳米纤维。随后对 PVP NFs 进行煅烧,形成了嵌入多孔 TiO2 NFs 中的 NiO NPs。由此产生的异质结构材料对丙酮检测有显著的响应,在 300 °C 的最佳工作温度下,空气中的电阻(Ra)与气体存在时的电阻(Rg)之比达到 83。此外,它在高相对湿度条件下也表现出稳定的性能。
{"title":"Enhanced acetone gas sensor via TiO2 nanofiber-NiO nanoparticle heterojunction","authors":"","doi":"10.1016/j.solidstatesciences.2024.107683","DOIUrl":"10.1016/j.solidstatesciences.2024.107683","url":null,"abstract":"<div><p>We present a high surface area sensor comprising NiO nanoparticles (NPs) incorporated within porous TiO<sub>2</sub> nanofibers (NFs), showing a remarkable response to acetone. Initially, we synthesized Polyvinylpyrrolidone (PVP) NFs containing titanium (Ti) and nickel (Ni) salts using a simple electrospinning method. Subsequent calcination of the PVP NFs led to the formation of NiO NPs embedded within the porous TiO<sub>2</sub> NFs. The resulting heterostructure material exhibited a significant response to acetone detection, with a ratio of electrical resistance in air (R<sub>a</sub>) to that in the presence of gas (R<sub>g</sub>) reaching 83 at its optimal operating temperature of 300 °C. Furthermore, it demonstrated stable performance under high relative humidity conditions.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure and hydrogen sorption properties of Nd0.5Y0.5MgNi4-xCox alloys (x = 0–3) Nd0.5Y0.5MgNi4-xCox 合金(x = 0-3 )的晶体结构和吸氢特性
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-30 DOI: 10.1016/j.solidstatesciences.2024.107674

The gas-phase and electrochemical hydrogenation properties of Nd0.5Y0.5MgNi4-xCox (where x varies from 0 to 3) were studied. Samples were prepared using sintering and annealing procedures. X-ray diffraction analysis indicated that all the alloys were single-phase. The alloys readily absorbed hydrogen, and the crystal structures of the resulting saturated hydrides were refined. Nd0.5Y0.5MgNi4H4.2 and Nd0.5Y0.5MgNi3CoH4.4 belong to the NdMgNi4H3.6 structural type, while Nd0.5Y0.5MgNi2Co2H5.5 and Nd0.5Y0.5MgNiCo3H6.0 belong to the LaMgNi4H4.85 structural type. Electrochemical studies revealed that the maximum discharge capacity of Nd0.5Y0.5MgNi4-xCox electrodes increased from 236 mAh/g to 328 mAh/g as the cobalt content increased. The high-rate dischargeability (HRD1000) initially decreased from 48 % to 7 % with increasing cobalt content, but then increased to 32 % at the highest cobalt concentration. Additionally, the electrochemical kinetic properties were determined and compared for these electrodes, including the charge-transfer resistance (Rct), polarization resistance (Rp), exchange current density (I0), limiting current density (IL), and hydrogen diffusion coefficient (DH).

研究了 Nd0.5Y0.5MgNi4-xCox(其中 x 为 0 至 3)的气相和电化学氢化特性。样品采用烧结和退火程序制备。X 射线衍射分析表明,所有合金都是单相的。合金很容易吸收氢气,由此产生的饱和氢化物的晶体结构也得到了完善。Nd0.5Y0.5MgNi4H4.2 和 Nd0.5Y0.5MgNi3CoH4.4 属于 NdMgNi4H3.6 结构类型,而 Nd0.5Y0.5MgNi2Co2H5.5 和 Nd0.5Y0.5MgNiCo3H6.0 属于 LaMgNi4H4.85 结构类型。电化学研究表明,随着钴含量的增加,Nd0.5Y0.5MgNi4-xCox 电极的最大放电容量从 236 mAh/g 增加到 328 mAh/g。随着钴含量的增加,高速放电率(HRD1000)最初从 48% 降至 7%,但在钴浓度最高时又增至 32%。此外,还测定并比较了这些电极的电化学动力学特性,包括电荷转移电阻 (Rct)、极化电阻 (Rp)、交换电流密度 (I0)、极限电流密度 (IL) 和氢扩散系数 (DH)。
{"title":"Crystal structure and hydrogen sorption properties of Nd0.5Y0.5MgNi4-xCox alloys (x = 0–3)","authors":"","doi":"10.1016/j.solidstatesciences.2024.107674","DOIUrl":"10.1016/j.solidstatesciences.2024.107674","url":null,"abstract":"<div><p>The gas-phase and electrochemical hydrogenation properties of Nd<sub>0.5</sub>Y<sub>0.5</sub>MgNi<sub>4-x</sub>Co<sub>x</sub> (where x varies from 0 to 3) were studied. Samples were prepared using sintering and annealing procedures. X-ray diffraction analysis indicated that all the alloys were single-phase. The alloys readily absorbed hydrogen, and the crystal structures of the resulting saturated hydrides were refined. Nd<sub>0.5</sub>Y<sub>0.5</sub>MgNi<sub>4</sub>H<sub>4.2</sub> and Nd<sub>0.5</sub>Y<sub>0.5</sub>MgNi<sub>3</sub>CoH<sub>4.4</sub> belong to the NdMgNi<sub>4</sub>H<sub>3.6</sub> structural type, while Nd<sub>0.5</sub>Y<sub>0.5</sub>MgNi<sub>2</sub>Co<sub>2</sub>H<sub>5.5</sub> and Nd<sub>0.5</sub>Y<sub>0.5</sub>MgNiCo<sub>3</sub>H<sub>6.0</sub> belong to the LaMgNi<sub>4</sub>H<sub>4.85</sub> structural type. Electrochemical studies revealed that the maximum discharge capacity of Nd<sub>0.5</sub>Y<sub>0.5</sub>MgNi<sub>4-x</sub>Co<sub>x</sub> electrodes increased from 236 mAh/g to 328 mAh/g as the cobalt content increased. The high-rate dischargeability (HRD<sub>1000</sub>) initially decreased from 48 % to 7 % with increasing cobalt content, but then increased to 32 % at the highest cobalt concentration. Additionally, the electrochemical kinetic properties were determined and compared for these electrodes, including the charge-transfer resistance (R<sub>ct</sub>), polarization resistance (R<sub>p</sub>), exchange current density (I<sub>0</sub>), limiting current density (I<sub>L</sub>), and hydrogen diffusion coefficient (D<sub>H</sub>).</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pt nanoclusters as co-catalysts for efficient photocatalytic hydrogen evolution 铂纳米团簇作为高效光催化氢气进化的辅助催化剂
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-29 DOI: 10.1016/j.solidstatesciences.2024.107680

Photocatalytic water splitting for hydrogen production is an ideal strategy to relieve the energy crisis. In this work, Pt nanoclusters are employed as a co-catalyst to modify g-C3N4 for optimizing the photocatalytic hydrogen evolution performance. Compared with the pristine g-C3N4, the Pt nanoclusterss/g-C3N4 nanocomposites exhibit dramatic enhancement toward H2 production, where the H2 evolution rate of CN-Pt-C2 is nearly 425.1 times higher than pristine g-C3N4. The phase structure, morphology, optical properties, and surface chemical states of the fabricated samples are fully investigated. Based on the systematical characterizations, the reason for the enhanced H2 generation performance is disclosed. It is expected this work can provide a valuable reference for the fabrication of a co-catalyst-based photocatalytic system.

光催化分水制氢是缓解能源危机的理想策略。本研究采用铂纳米团簇作为辅助催化剂,对 g-C3N4 进行改性,以优化其光催化制氢性能。与原始 g-C3N4 相比,铂纳米团簇/g-C3N4 纳米复合材料的氢气产生率显著提高,CN-Pt-C2 的氢气进化率是原始 g-C3N4 的近 425.1 倍。对制备样品的相结构、形貌、光学特性和表面化学状态进行了全面研究。在系统表征的基础上,揭示了 H2 生成性能增强的原因。希望这项工作能为基于助催化剂的光催化系统的制备提供有价值的参考。
{"title":"Pt nanoclusters as co-catalysts for efficient photocatalytic hydrogen evolution","authors":"","doi":"10.1016/j.solidstatesciences.2024.107680","DOIUrl":"10.1016/j.solidstatesciences.2024.107680","url":null,"abstract":"<div><p>Photocatalytic water splitting for hydrogen production is an ideal strategy to relieve the energy crisis. In this work, Pt nanoclusters are employed as a co-catalyst to modify g-C<sub>3</sub>N<sub>4</sub> for optimizing the photocatalytic hydrogen evolution performance. Compared with the pristine g-C<sub>3</sub>N<sub>4</sub>, the Pt nanoclusterss/g-C<sub>3</sub>N<sub>4</sub> nanocomposites exhibit dramatic enhancement toward H<sub>2</sub> production, where the H<sub>2</sub> evolution rate of CN-Pt-C2 is nearly 425.1 times higher than pristine g-C<sub>3</sub>N<sub>4</sub>. The phase structure, morphology, optical properties, and surface chemical states of the fabricated samples are fully investigated. Based on the systematical characterizations, the reason for the enhanced H<sub>2</sub> generation performance is disclosed. It is expected this work can provide a valuable reference for the fabrication of a co-catalyst-based photocatalytic system.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An extension of atomic mean square displacement method for calculating melting temperatures in II-VI compounds 原子均方位移法在计算 II-VI 化合物熔化温度方面的扩展
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-29 DOI: 10.1016/j.solidstatesciences.2024.107681

Understanding how solids melt and determining their melting temperatures is of great significance for studying the properties of materials. Based on the main idea of Lindemann's melting criterion and the first-principles calculation of density functional theory, we proposed the atomic mean square displacement method to predict the melting temperature of the material. In this paper, the application range of this method for calculating melting temperature is extended. 8 kinds of Ⅱ-Ⅵ compounds were selected as verification objects. The results show the accuracy of our method in predicting the melting temperature of Ⅱ-Ⅵ compounds.

了解固体如何熔化以及确定其熔化温度对于研究材料的性质具有重要意义。基于林德曼熔化准则的主要思想和密度泛函理论的第一性原理计算,我们提出了原子均方位移法来预测材料的熔化温度。本文扩大了该方法在计算熔化温度方面的应用范围。选取了 8 种Ⅱ-Ⅵ族化合物作为验证对象。结果表明,我们的方法在预测Ⅱ-Ⅵ化合物熔化温度方面具有很高的准确性。
{"title":"An extension of atomic mean square displacement method for calculating melting temperatures in II-VI compounds","authors":"","doi":"10.1016/j.solidstatesciences.2024.107681","DOIUrl":"10.1016/j.solidstatesciences.2024.107681","url":null,"abstract":"<div><p>Understanding how solids melt and determining their melting temperatures is of great significance for studying the properties of materials. Based on the main idea of Lindemann's melting criterion and the first-principles calculation of density functional theory, we proposed the atomic mean square displacement method to predict the melting temperature of the material. In this paper, the application range of this method for calculating melting temperature is extended. 8 kinds of Ⅱ-Ⅵ compounds were selected as verification objects. The results show the accuracy of our method in predicting the melting temperature of Ⅱ-Ⅵ compounds.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and fabrication of nitrogen-doped graphene-promoted Na3MnTi(PO4)3@C cathode with three-electron reactions for sodium-ion storage 设计和制造氮掺杂石墨烯促进的 Na3MnTi(PO4)3@C 阴极,用于钠离子存储的三电子反应
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-28 DOI: 10.1016/j.solidstatesciences.2024.107678

As a novel cathode material for sodium-ion batteries, Na3MnTi(PO4)3 (denoted as NMTP) has received great attention because of its abundant natural resources, excellent safety, low toxicity as well as three-electron reactions. Unfortunately, the pure NMTP cathode displays a bad conductivity, resulting in an inferior electrochemical performance for sodium energy storage. Herein, we introduce a good route to fabricate the nitrogen-doped graphene-decorated NMTP@C (denoted as NG-NMTP@C) composite with superior rate property and superior cycle stability for the first time. In this fabricated material, the nitrogen-doped graphene nanosheets are dispersed into the NMTP@C particles. Compared to NMTP@C, the prepared NG-NMTP@C cathode possesses better cycle stability and higher capacity. It shows the capacity of 173.1 mAh g−1 at 0.1 C and presents the high capacity retention of around 97.1 % at 10.0 C over 400 cycles. Therefore, this fabricated NG-NMTP@C nanocomposite can be employed as the novel positive electrode in sodium-ion storage.

作为钠离子电池的新型阴极材料,Na3MnTi(PO4)3(简称 NMTP)因其丰富的自然资源、极佳的安全性、低毒性以及三电子反应而备受关注。遗憾的是,纯 NMTP 阴极的电导率较低,导致钠储能的电化学性能较差。在此,我们首次介绍了一种制备氮掺杂石墨烯装饰 NMTP@C (简称 NG-NMTP@C)复合材料的良好途径,该材料具有优异的速率特性和循环稳定性。在这种材料中,氮掺杂石墨烯纳米片分散在 NMTP@C 颗粒中。与 NMTP@C 相比,制备的 NG-NMTP@C 阴极具有更好的循环稳定性和更高的容量。它在 0.1 摄氏度时的容量为 173.1 mAh g-1,在 10.0 摄氏度时的容量保持率高达 97.1%。因此,这种制备的 NG-NMTP@C 纳米复合材料可用作钠离子存储的新型正极。
{"title":"Design and fabrication of nitrogen-doped graphene-promoted Na3MnTi(PO4)3@C cathode with three-electron reactions for sodium-ion storage","authors":"","doi":"10.1016/j.solidstatesciences.2024.107678","DOIUrl":"10.1016/j.solidstatesciences.2024.107678","url":null,"abstract":"<div><p>As a novel cathode material for sodium-ion batteries, Na<sub>3</sub>MnTi(PO<sub>4</sub>)<sub>3</sub> (denoted as NMTP) has received great attention because of its abundant natural resources, excellent safety, low toxicity as well as three-electron reactions. Unfortunately, the pure NMTP cathode displays a bad conductivity, resulting in an inferior electrochemical performance for sodium energy storage. Herein, we introduce a good route to fabricate the nitrogen-doped graphene-decorated NMTP@C (denoted as NG-NMTP@C) composite with superior rate property and superior cycle stability for the first time. In this fabricated material, the nitrogen-doped graphene nanosheets are dispersed into the NMTP@C particles. Compared to NMTP@C, the prepared NG-NMTP@C cathode possesses better cycle stability and higher capacity. It shows the capacity of 173.1 mAh g<sup>−1</sup> at 0.1 C and presents the high capacity retention of around 97.1 % at 10.0 C over 400 cycles. Therefore, this fabricated NG-NMTP@C nanocomposite can be employed as the novel positive electrode in sodium-ion storage.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-principles calculations and experimental studies on Cr2MnAl Heusler alloy nanoparticles for spintronics applications 用于自旋电子学应用的 Cr2MnAl Heusler 合金纳米粒子的第一性原理计算和实验研究
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-27 DOI: 10.1016/j.solidstatesciences.2024.107679

In depth understanding of the magnetic, structural and electrical properties of Heusler alloys are crucial to achieve potential applications in spin-based device. Wherein, we report the synthesis of Cr2MnAl Heusler alloy nanoparticles (NPs) via co-precipitation method and also demonstrated their transport properties. Interestingly X-ray analysis confirms the cubic phase of the synthesized Heusler alloy NPs and transmission electron microscopy (TEM) analysis reveals that the Cr2MnAl as particle size of 10 ± 2 nm. Moreover, this particle size has adverse effect on symmetry of Cr2MnAl Heusler alloy due to their higher surface to volume ratio that significantly changes their magnetic and electrical properties. These NPs exhibit soft ferromagnetic properties with a Curie temperature (Tc) of 25 K. Besides, resistivity measurements indicate the semiconducting nature and also we report the observation of anomalous Hall effect. In addition, we support our experimental results by studying the electronic and magnetic properties of alloy using first principle calculations. This density functional theory reveals that Cr2MnAl has half metallic characteristics with high spin polarization. In light of above, this material can be used as intermediate layer to decouple the two ferromagnetic layers which acts as spin-polarized carriers in spin-based device.

深入了解 Heusler 合金的磁性、结构和电学特性对于实现自旋器件的潜在应用至关重要。其中,我们报告了通过共沉淀法合成 Cr2MnAl Heusler 合金纳米颗粒(NPs)的情况,并展示了它们的传输特性。有趣的是,X 射线分析证实合成的 Heusler 合金 NPs 为立方相,透射电子显微镜(TEM)分析显示 Cr2MnAl 的粒径为 10 ± 2 nm。此外,这种粒度对 Cr2MnAl Heusler 合金的对称性有不利影响,因为它们的表面与体积比更高,从而显著改变了它们的磁性和电性。这些 NPs 表现出软铁磁特性,居里温度 (Tc) 为 25 K。此外,电阻率测量结果表明它们具有半导体性质,我们还报告了反常霍尔效应的观测结果。此外,我们还利用第一原理计算方法研究了合金的电子和磁性能,为实验结果提供了支持。密度泛函理论显示,Cr2MnAl 具有高自旋极化的半金属特性。有鉴于此,这种材料可用作中间层来解耦两个铁磁层,从而在基于自旋的器件中充当自旋极化载流子。
{"title":"First-principles calculations and experimental studies on Cr2MnAl Heusler alloy nanoparticles for spintronics applications","authors":"","doi":"10.1016/j.solidstatesciences.2024.107679","DOIUrl":"10.1016/j.solidstatesciences.2024.107679","url":null,"abstract":"<div><p>In depth understanding of the magnetic, structural and electrical properties of Heusler alloys are crucial to achieve potential applications in spin-based device. Wherein, we report the synthesis of Cr<sub>2</sub>MnAl Heusler alloy nanoparticles (NPs) via co-precipitation method and also demonstrated their transport properties. Interestingly X-ray analysis confirms the cubic phase of the synthesized Heusler alloy NPs and transmission electron microscopy (TEM) analysis reveals that the Cr<sub>2</sub>MnAl as particle size of 10 ± 2 nm. Moreover, this particle size has adverse effect on symmetry of Cr<sub>2</sub>MnAl Heusler alloy due to their higher surface to volume ratio that significantly changes their magnetic and electrical properties. These NPs exhibit soft ferromagnetic properties with a Curie temperature (Tc) of 25 K. Besides, resistivity measurements indicate the semiconducting nature and also we report the observation of anomalous Hall effect. In addition, we support our experimental results by studying the electronic and magnetic properties of alloy using first principle calculations. This density functional theory reveals that Cr<sub>2</sub>MnAl has half metallic characteristics with high spin polarization. In light of above, this material can be used as intermediate layer to decouple the two ferromagnetic layers which acts as spin-polarized carriers in spin-based device.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and physical properties of a new telluride Mg1.2(1)In1.2(1)Si2Te6 新型碲化镉 Mg1.2(1)In1.2(1)Si2Te6 的结构和物理性质
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-26 DOI: 10.1016/j.solidstatesciences.2024.107677

A new Mg-containing disordered quaternary telluride Mg1.2(1)In1.2(1)Si2Te6 is prepared at 1223 K by direct fusion of elements. This mixed metal telluride adopts a trigonal (P31m space group) structure having refined cell constants of a = b = 7.0603(3) Å and c = 7.1681(4) Å. Four unique crystallographic sites are filled in the structure: one disordered metal site (In1/Mg1), one partially filled Mg2, one Si1, and one Te1. Each metal ion (In and Mg) in the structure sits at the center of a distorted octahedron of Te1 atoms. Two Si atoms are involved in forming an ethane-like Si2Te6 unit with the help of a Si−Si bond. The local coordination environment around each Si atom can be described as a distorted tetrahedron comprising one Si1 and three Te1 atoms. A polycrystalline sample with the loaded composition of Mg1.2In1.2Si2Te6 shows an optical bandgap of 1.02(2) eV. The p-type semiconducting nature of the Mg1.2In1.2Si2Te6 sample was established from the positive values of the Seebeck coefficient (S) and resistivity studies. The complex structure of the Mg1.2In1.2Si2Te6 phase, which features heavy elements (In and Te), helps to achieve ultralow total thermal conductivity (ktot) of 0.33 W/mK at 773 K.

通过元素直接熔合,在 1223 K 温度下制备出了一种新的含镁无序四元碲化物 Mg1.2(1)In1.2(1)Si2Te6 。这种混合金属碲化物采用三棱(P3‾1m 空间群)结构,其精制晶胞常数为 a = b = 7.0603(3) Å 和 c = 7.1681(4) Å。结构中的每个金属离子(In 和 Mg)都位于一个由 Te1 原子组成的扭曲八面体的中心。两个 Si 原子在 Si-Si 键的帮助下形成一个类似乙烷的 Si2Te6 单元。每个 Si 原子周围的局部配位环境可以描述为由一个 Si1 原子和三个 Te1 原子组成的扭曲四面体。负载成分为 Mg1.2In1.2Si2Te6 的多晶样品显示出 1.02(2) eV 的光带隙。Mg1.2In1.2Si2Te6 样品的塞贝克系数(S)正值和电阻率研究证实了它的 p 型半导体性质。以重元素(In 和 Te)为特征的 Mg1.2In1.2Si2Te6 相结构复杂,有助于在 773 K 时实现 0.33 W/mK 的超低总热导率 (ktot)。
{"title":"Structure and physical properties of a new telluride Mg1.2(1)In1.2(1)Si2Te6","authors":"","doi":"10.1016/j.solidstatesciences.2024.107677","DOIUrl":"10.1016/j.solidstatesciences.2024.107677","url":null,"abstract":"<div><p>A new Mg-containing disordered quaternary telluride Mg<sub>1.2(1)</sub>In<sub>1.2(1)</sub>Si<sub>2</sub>Te<sub>6</sub> is prepared at 1223 K by direct fusion of elements. This mixed metal telluride adopts a trigonal (<em>P</em><span><math><mrow><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span>1<em>m</em> space group) structure having refined cell constants of <em>a</em> = <em>b</em> = 7.0603(3) Å and <em>c</em> = 7.1681(4) Å. Four unique crystallographic sites are filled in the structure: one disordered metal site (In1/Mg1), one partially filled Mg2, one Si1, and one Te1. Each metal ion (In and Mg) in the structure sits at the center of a distorted octahedron of Te1 atoms. Two Si atoms are involved in forming an ethane-like Si<sub>2</sub>Te<sub>6</sub> unit with the help of a Si−Si bond. The local coordination environment around each Si atom can be described as a distorted tetrahedron comprising one Si1 and three Te1 atoms. A polycrystalline sample with the loaded composition of Mg<sub>1.2</sub>In<sub>1.2</sub>Si<sub>2</sub>Te<sub>6</sub> shows an optical bandgap of 1.02(2) eV. The <em>p</em>-type semiconducting nature of the Mg<sub>1.2</sub>In<sub>1.2</sub>Si<sub>2</sub>Te<sub>6</sub> sample was established from the positive values of the Seebeck coefficient (<em>S</em>) and resistivity studies. The complex structure of the Mg<sub>1.2</sub>In<sub>1.2</sub>Si<sub>2</sub>Te<sub>6</sub> phase, which features heavy elements (In and Te), helps to achieve ultralow total thermal conductivity (<em>k</em><sub><em>tot</em></sub>) of 0.33 W/mK at 773 K.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and sodium storage properties of Ni-CoFe2O4/Reduced graphene oxide 镍-钴-铁氧化物/还原氧化石墨烯的制备与钠储存特性
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-26 DOI: 10.1016/j.solidstatesciences.2024.107673

The Ni-doped CoFe2O4 graphene composites (Ni-CFO/RGO) have been successfully prepared using the microwave-assisted method. The substance is a novel nanocomposite structure in which CoFe2O4 nanoparticles are tightly and uniformly attached to graphene hybrid nanosheets. The synergistic effect of Ni doping and CoFe2O4 can reduce the volume expansion of CoFe2O4 in the reaction process and inhibit the stacking of graphene. Because the Ni-CFO/RGO composite is structurally stable during the electrochemical reaction, it has a good theoretical capacity. Excellent carbon composite can further enhance the electron transport performance and structural stability of the material, thereby improving the electrochemical performance and cycle life of the material. Doping Ni2+ into metal oxides can not only form oxygen vacancies, and improve the transport capacity of sodium ions, but also broaden the electron transport channel. In addition, the catalyst can form a composite structure with metal oxide, which can effectively inhibit its volume expansion. At the same time, reacting with carbon materials, can also effectively reduce the accumulation of carbon, thereby reducing its resistance. After 200 cycles at a current density of 0.05 A g−1, it can provide a high sodium storage capacity of 380.6 mAh g−1, which still keeps 203.4 mAh g−1 at 1.5 A g−1.

利用微波辅助法成功制备了掺镍 CoFe2O4 石墨烯复合材料(Ni-CFO/RGO)。该物质是一种新型的纳米复合结构,其中 CoFe2O4 纳米颗粒紧密而均匀地附着在石墨烯混合纳米片上。掺杂镍和 CoFe2O4 的协同效应可以降低 CoFe2O4 在反应过程中的体积膨胀,抑制石墨烯的堆叠。由于 Ni-CFO/RGO 复合材料在电化学反应过程中结构稳定,因此具有良好的理论容量。优异的碳复合材料可以进一步提高材料的电子传输性能和结构稳定性,从而改善材料的电化学性能和循环寿命。在金属氧化物中掺杂 Ni2+ 不仅能形成氧空位,提高钠离子的传输能力,还能拓宽电子传输通道。此外,催化剂还能与金属氧化物形成复合结构,有效抑制其体积膨胀。同时,与碳材料发生反应,还能有效减少碳的积累,从而降低其电阻。在 0.05 A g-1 的电流密度下循环 200 次后,它可以提供 380.6 mAh g-1 的高钠存储容量,在 1.5 A g-1 时仍能保持 203.4 mAh g-1 的容量。
{"title":"Preparation and sodium storage properties of Ni-CoFe2O4/Reduced graphene oxide","authors":"","doi":"10.1016/j.solidstatesciences.2024.107673","DOIUrl":"10.1016/j.solidstatesciences.2024.107673","url":null,"abstract":"<div><p>The Ni-doped CoFe<sub>2</sub>O<sub>4</sub> graphene composites (Ni-CFO/RGO) have been successfully prepared using the microwave-assisted method. The substance is a novel nanocomposite structure in which CoFe<sub>2</sub>O<sub>4</sub> nanoparticles are tightly and uniformly attached to graphene hybrid nanosheets. The synergistic effect of Ni doping and CoFe<sub>2</sub>O<sub>4</sub> can reduce the volume expansion of CoFe<sub>2</sub>O<sub>4</sub> in the reaction process and inhibit the stacking of graphene. Because the Ni-CFO/RGO composite is structurally stable during the electrochemical reaction, it has a good theoretical capacity. Excellent carbon composite can further enhance the electron transport performance and structural stability of the material, thereby improving the electrochemical performance and cycle life of the material. Doping Ni<sup>2+</sup> into metal oxides can not only form oxygen vacancies, and improve the transport capacity of sodium ions, but also broaden the electron transport channel. In addition, the catalyst can form a composite structure with metal oxide, which can effectively inhibit its volume expansion. At the same time, reacting with carbon materials, can also effectively reduce the accumulation of carbon, thereby reducing its resistance. After 200 cycles at a current density of 0.05 A g<sup>−1</sup>, it can provide a high sodium storage capacity of 380.6 mAh g<sup>−1</sup>, which still keeps 203.4 mAh g<sup>−1</sup> at 1.5 A g<sup>−1</sup>.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structural mechanisms of pressure-induced phase transitions in the Carpy-Galy phase layered perovskites Carpy-Galy 相层状过氧化物中压力诱导相变的结构机制
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-26 DOI: 10.1016/j.solidstatesciences.2024.107676

In layered perovskites with the Carpy-Galy structural type, similar structural phase transitions occur under high pressure. These structural changes, which are crucial for the pressure-induced phase transition in layered perovskite, were analyzed based on experimental X-ray diffraction data. The tilting of the Ti-O6 octahedra and the distortion of the arrangement of rare-earth atoms were studied in detail. Changes in these structural features in layered perovskite serve as common indicators of the phase transition to the monoclinic phase that occurs under high pressure application.

在具有 Carpy-Galy 结构类型的层状过氧化物中,高压下也会发生类似的结构相变。根据 X 射线衍射实验数据分析了这些结构变化,它们对于层状过氧化物的压力诱导相变至关重要。详细研究了 Ti-O6 八面体的倾斜和稀土原子排列的扭曲。层状闪锌矿中这些结构特征的变化是高压作用下发生单斜相转变的常见指标。
{"title":"The structural mechanisms of pressure-induced phase transitions in the Carpy-Galy phase layered perovskites","authors":"","doi":"10.1016/j.solidstatesciences.2024.107676","DOIUrl":"10.1016/j.solidstatesciences.2024.107676","url":null,"abstract":"<div><p>In layered perovskites with the Carpy-Galy structural type, similar structural phase transitions occur under high pressure. These structural changes, which are crucial for the pressure-induced phase transition in layered perovskite, were analyzed based on experimental X-ray diffraction data. The tilting of the Ti-O<sub>6</sub> octahedra and the distortion of the arrangement of rare-earth atoms were studied in detail. Changes in these structural features in layered perovskite serve as common indicators of the phase transition to the monoclinic phase that occurs under high pressure application.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing photocatalytic CO2 reduction to CO through increased effective interfaces on 2D/2D BiOIO3/Bi-MOF type II heterojunctions 通过增加二维/二维 BiOIO3/Bi-MOF II 型异质结上的有效界面,提高光催化二氧化碳还原为一氧化碳的能力
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-23 DOI: 10.1016/j.solidstatesciences.2024.107670

The conversion of CO2 into fuel using photocatalytic technology is critical in reducing greenhouse gas emissions and addressing the energy issue. In this paper, type II heterojunctions of 2D/2D BiOIO3/Bi-MOF were built using the solvothermal approach. The materials were characterized utilizing methods such as XRD, SEM, TEM, XPS, UV–vis diffuse reflection, and an electrochemical workstation. Under 300 W Xenon lamp irradiation, BiOIO3/Bi-MOF-30 (BOIOB-30) produced 21.26 μmol/g/h of CO, 1.95 times greater than pure BiOIO3. This improvement is related to the alteration of BiOIO3 with lamellar Bi-MOF, which provides more reactive sites and significantly increases the composite's photocatalytic activity.

利用光催化技术将二氧化碳转化为燃料对于减少温室气体排放和解决能源问题至关重要。本文利用溶解热方法构建了 2D/2D BiOIO3/Bi-MOF 的 II 型异质结。利用 XRD、SEM、TEM、XPS、紫外-可见漫反射和电化学工作站等方法对材料进行了表征。在 300 W 氙灯照射下,BiOIO3/Bi-MOF-30(BIOB-30)产生了 21.26 μmol/g/h 的 CO,是纯 BiOIO3 的 1.95 倍。这种改进与用片状 Bi-MOF 改变 BiOIO3 有关,片状 Bi-MOF 提供了更多的反应位点,显著提高了复合材料的光催化活性。
{"title":"Enhancing photocatalytic CO2 reduction to CO through increased effective interfaces on 2D/2D BiOIO3/Bi-MOF type II heterojunctions","authors":"","doi":"10.1016/j.solidstatesciences.2024.107670","DOIUrl":"10.1016/j.solidstatesciences.2024.107670","url":null,"abstract":"<div><p>The conversion of CO<sub>2</sub> into fuel using photocatalytic technology is critical in reducing greenhouse gas emissions and addressing the energy issue. In this paper, type II heterojunctions of 2D/2D BiOIO<sub>3</sub>/Bi-MOF were built using the solvothermal approach. The materials were characterized utilizing methods such as XRD, SEM, TEM, XPS, UV–vis diffuse reflection, and an electrochemical workstation. Under 300 W Xenon lamp irradiation, BiOIO<sub>3</sub>/Bi-MOF-30 (BOIOB-30) produced 21.26 μmol/g/h of CO, 1.95 times greater than pure BiOIO<sub>3</sub>. This improvement is related to the alteration of BiOIO<sub>3</sub> with lamellar Bi-MOF, which provides more reactive sites and significantly increases the composite's photocatalytic activity.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid State Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1