{"title":"Nanocomposite filled slots that enhance radiation of flexible nonagon antenna","authors":"Abhilash S. Vasu , T.K. Sreeja , N.R. Lakshmi","doi":"10.1016/j.mee.2024.112258","DOIUrl":null,"url":null,"abstract":"<div><p>The new radiator incorporated with nanocomposites improve radiation characteristics of nonagon shaped antenna. The design comprise two nanocomposite materials loaded in slots that separately enhance lower and upper band radiation. The CPW antenna consists of nonagon shaped ring with heptagon radiating element that consists of inverted U and rigid shaped slots. The longer slot has been deliberately chosen to accommodate mid-frequency of two resonance frequencies and shorter slot isolates surface current distributed along radiating patch, left and right side. The Poly (3, 4 ethyelene dioxythiophene): Polystyrene Sulfonate-Silver nanowire (PEDOT:PSS-AgNW) nanocomposite filled in shorter slot improves gain, bandwidth and return loss of upper band, magnetite - Polyaniline (Fe<sub>3</sub>O<sub>4</sub>-PANI) filled in longer slot enhance lower band. The measured result proved to improve bandwidth, gain, radiation efficiency and polarization of lower, upper band. The flexible attributes of radiator studied extensively by wearable application by placing them on wrist and jeans. The fabricated antenna produce a bandwidth of 2.12–3.29 GHz in lower band, 4.51–6.00 GHz in upper band for 2.40/5.20/5.80 GHz WLAN, 2.50/5.50 GHz WiMAX, 2.40/4.90/5.20/5.50/5.80 GHz WiFi, 5G SUB-6 GHz and ISM bands.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"294 ","pages":"Article 112258"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724001278","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The new radiator incorporated with nanocomposites improve radiation characteristics of nonagon shaped antenna. The design comprise two nanocomposite materials loaded in slots that separately enhance lower and upper band radiation. The CPW antenna consists of nonagon shaped ring with heptagon radiating element that consists of inverted U and rigid shaped slots. The longer slot has been deliberately chosen to accommodate mid-frequency of two resonance frequencies and shorter slot isolates surface current distributed along radiating patch, left and right side. The Poly (3, 4 ethyelene dioxythiophene): Polystyrene Sulfonate-Silver nanowire (PEDOT:PSS-AgNW) nanocomposite filled in shorter slot improves gain, bandwidth and return loss of upper band, magnetite - Polyaniline (Fe3O4-PANI) filled in longer slot enhance lower band. The measured result proved to improve bandwidth, gain, radiation efficiency and polarization of lower, upper band. The flexible attributes of radiator studied extensively by wearable application by placing them on wrist and jeans. The fabricated antenna produce a bandwidth of 2.12–3.29 GHz in lower band, 4.51–6.00 GHz in upper band for 2.40/5.20/5.80 GHz WLAN, 2.50/5.50 GHz WiMAX, 2.40/4.90/5.20/5.50/5.80 GHz WiFi, 5G SUB-6 GHz and ISM bands.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.