{"title":"Enhancing oxygen permeability and water content in silicone hydrogels through carboxylic acid and surfactant incorporation","authors":"Bo-Tau Liu, We-Chen Pan, Yi-Ting Lu, Kai-Ting Sun","doi":"10.1016/j.jtice.2024.105745","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Silicone hydrogels are vital materials in fields like contact lenses, biomedicine, and electronic devices, prized for their unique properties including oxygen permeability and equilibrium water content (EWC). These features make them ideal for applications that require both breathability and moisture retention, enhancing their performance and comfort in various uses. Typically, enhancing the silicone content increases oxygen permeability but reduces EWC, creating a significant trade-off.</p></div><div><h3>Methods</h3><p>This study introduces an innovative approach using carboxylic acid and surfactant to address this challenge. The addition of carboxylic acid markedly boosts the EWC by increasing both freezable free water and bound water. Simultaneously, the surfactant enhances the connectivity within the silicone structure, mitigating the reduction in oxygen permeability and improving the material's ductility, which is often compromised by water absorption that restricts the motion of the silicone chains.</p></div><div><h3>Significant findings</h3><p>With these modifications, the silicone hydrogel achieves approximately 97 % transmittance at 550 nm, with oxygen permeability reaching 100.4 barrer and EWC at 58.4 %, representing improvements of 11.3 % and 61.3 %, respectively, compared to the original material. These results exceed many of the enhancements in silicone hydrogels previously reported in the literature.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105745"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004036","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Silicone hydrogels are vital materials in fields like contact lenses, biomedicine, and electronic devices, prized for their unique properties including oxygen permeability and equilibrium water content (EWC). These features make them ideal for applications that require both breathability and moisture retention, enhancing their performance and comfort in various uses. Typically, enhancing the silicone content increases oxygen permeability but reduces EWC, creating a significant trade-off.
Methods
This study introduces an innovative approach using carboxylic acid and surfactant to address this challenge. The addition of carboxylic acid markedly boosts the EWC by increasing both freezable free water and bound water. Simultaneously, the surfactant enhances the connectivity within the silicone structure, mitigating the reduction in oxygen permeability and improving the material's ductility, which is often compromised by water absorption that restricts the motion of the silicone chains.
Significant findings
With these modifications, the silicone hydrogel achieves approximately 97 % transmittance at 550 nm, with oxygen permeability reaching 100.4 barrer and EWC at 58.4 %, representing improvements of 11.3 % and 61.3 %, respectively, compared to the original material. These results exceed many of the enhancements in silicone hydrogels previously reported in the literature.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.